Download Free Interaction Of Non Verbal Auditory Selective Attention And Working Memory Book in PDF and EPUB Free Download. You can read online Interaction Of Non Verbal Auditory Selective Attention And Working Memory and write the review.

As cognitive models of behavior continue to evolve, the mechanics of cognitive exceptionality, with its range of individual variations in abilities and performance, remains a challenge to psychology. Reaching beyond the standard view of exceptional cognition equaling superior intelligence, the Handbook of Individual Differences in Cognition examines the latest findings from psychobiology, cognitive psychology, and neuroscience, for a comprehensive state-of-the-art volume. Breaking down cognition in terms of attentional mechanisms, working memory, and higher-order processing, contributors discuss general models of cognition and personality. Chapter authors build on this foundation as they revisit current theory in such areas as processing effort and general arousal and examine emerging methods in individual differences research, including new data on the role of brain plasticity in cognitive function. The possibility of a unified theory of individual differences in cognitive ability and the extent to which these variables may account for real-world competencies are emphasized, and commentary chapters offer suggestions for further research priorities. Coverage highlights include: The relationship between cognition and temperamental traits. The development of autobiographical memory. Anxiety and attentional control. The neurophysiology of gender differences in cognitive ability. Intelligence and cognitive control. Individual differences in dual task coordination. The effects of subclinical depression on attention, memory, and reasoning. Mood as a shaper of information. Researchers, clinicians, and graduate students in psychology and cognitive sciences, including clinical psychology and neuropsychology, personality and social psychology, neuroscience, and education, will find the Handbook of Individual Differences in Cognition an expert guide to the field as it currently stands and to its agenda for the future.
Historically, cognitive sciences have considered selective attention and working memory as largely separated cognitive functions. That is, selective attention as a concept is typically reserved for the processes that allow for the prioritization of specific sensory input, while working memory entails more central structures for maintaining (and operating on) temporary mental representations. However, over the last decades various observations have been reported that question such sharp distinction. Most importantly, information stored in working memory has been shown to modulate selective attention processing – and vice versa. At the theoretical level, these observations are paralleled by an increasingly dominant focus on working memory as (involving) the attended part of long-term memory, with some positions considering that working memory is equivalent to selective attention turned to long-term memory representations – or internal selective attention. This questions the existence of working memory as a dedicated cognitive function and raises the need for integrative accounts of working memory and attention. The next step will be to explore the precise implications of attentional accounts of WM for the understanding of specific aspects and characteristics of WM, such as serial order processing, its modality-specificity, its capacity limitations, its relation with executive functions, as well as the nature of attentional mechanisms involved. This research topic in Frontiers in Human Neuroscience aims at bringing together the latest insights and findings about the interplay between working memory and selective attention.
We live in a complex and dynamically changing acoustic environment. To this end, the auditory cortex of humans has developed the ability to process a remarkable amount of diverse acoustic information with apparent ease. In fact, a phylogenetic comparison of auditory systems reveals that human auditory association cortex in particular has undergone extensive changes relative to that of other species, although our knowledge of this remains incomplete. In contrast to other senses, human auditory cortex receives input that is highly pre-processed in a number of sub-cortical structures; this suggests that even primary auditory cortex already performs quite complex analyses. At the same time, much of the functional role of the various sub-areas in human auditory cortex is still relatively unknown, and a more sophisticated understanding is only now emerging through the use of contemporary electrophysiological and neuroimaging techniques. The integration of results across the various techniques signify a new era in our knowledge of how human auditory cortex forms basis for auditory experience. This volume on human auditory cortex will have two major parts. In Part A, the principal methodologies currently used to investigate human auditory cortex will be discussed. Each chapter will first outline how the methodology is used in auditory neuroscience, highlighting the challenges of obtaining data from human auditory cortex; second, each methods chapter will provide two or (at most) three brief examples of how it has been used to generate a major result about auditory processing. In Part B, the central questions for auditory processing in human auditory cortex are covered. Each chapter can draw on all the methods introduced in Part A but will focus on a major computational challenge the system has to solve. This volume will constitute an important contemporary reference work on human auditory cortex. Arguably, this will be the first and most focused book on this critical neurological structure. The combination of different methodological and experimental approaches as well as a diverse range of aspects of human auditory perception ensures that this volume will inspire novel insights and spurn future research.
Mechanisms of Sensory Working Memory: Attention and Performance XXV provides an update on research surrounding the memory processes that are crucial for many facets of cognitive processing and experience, with new coverage of emerging areas of study, including a new understanding of working memory for features of stimuli devoid of verbal, phonological, or long-term memory content, such as memory for simple visual features (e.g., texture or color), simple auditory features (e.g., pitch), or simple tactile features (e.g., vibration frequency), now called sensory memory to distinguish from verbal memory. This contemporary focus on sensory memory is just beginning, and this collection of original contributions provides a foundational reference for the study mechanisms of sensory memory. Students, scholars, and researchers studying memory mechanisms and processes in cognitive neuroscience, cognitive science, neuroscience, and psychology will find this book of great value to their work. - Introduces the study of sensory mechanisms of working memory as distinct from verbal memory - Covers visual memory, auditory memory, and tactile memory - Includes translational content as the breakdown of working memory is often associated with a disease, disorder, or trauma to the brain
Speech is multisensory since it is perceived through several senses. Audition is the most important one as speech is mostly heard. The role of vision has long been acknowledged since many articulatory gestures can be seen on the talker's face. Sometimes speech can even be felt by touching the face. The best-known multisensory illusion is the McGurk effect, where incongruent visual articulation changes the auditory percept. The interest in the McGurk effect arises from a major general question in multisensory research: How is information from different senses combined? Despite decades of research, a conclusive explanation for the illusion remains elusive. This is a good demonstration of the challenges in the study of multisensory integration. Speech is special in many ways. It is the main means of human communication, and a manifestation of a unique language system. It is a signal with which all humans have a lot of experience. We are exposed to it from birth, and learn it through development in face-to-face contact with others. It is a signal that we can both perceive and produce. The role of the motor system in speech perception has been debated for a long time. Despite very active current research, it is still unclear to which extent, and in which role, the motor system is involved in speech perception. Recent evidence shows that brain areas involved in speech production are activated during listening to speech and watching a talker's articulatory gestures. Speaking involves coordination of articulatory movements and monitoring their auditory and somatosensory consequences. How do auditory, visual, somatosensory, and motor brain areas interact during speech perception? How do these sensorimotor interactions contribute to speech perception? It is surprising that despite a vast amount of research, the secrets of speech perception have not yet been solved. The multisensory and sensorimotor approaches provide new opportunities in solving them. Contributions to the research topic are encouraged for a wide spectrum of research on speech perception in multisensory and sensorimotor contexts, including novel experimental findings ranging from psychophysics to brain imaging, theories and models, reviews and opinions.
This book offers a thorough exploration of interaction design by examining various technologies, interaction techniques, styles, and devices. This book • Assists readers in acquiring a deep understanding of diverse ways humans interact with computer technologies and in selecting the most suitable approach for various interactive scenarios. • Introduces cutting‐edge interaction techniques, including multimodal and gesture‐based interaction, wearables, haptic, speech and sound‐based interaction, embodied interaction, and more. • Advances beyond traditional interfaces to large and multiscreen interactions, proxemics, brain‐computer interfaces, affective computing and Extended Reality. This book will appeal to individuals interested in Human-Computer Interaction research and applications.
Communication is vital for social participation. However, communication often takes place under suboptimal conditions. This makes communication harder and less reliable, leading at worst to social isolation. In order to promote participation, it is necessary to understand the mechanisms underlying communication in different situations. Human communication is often speech based, either oral or written, but may also involve gesture, either accompanying speech or in the form of sign language. For communication to be achieved, a signal generated by one person has to be perceived by another person, attended to, comprehended and responded to. This process may be hindered by adverse conditions including factors that may be internal to the sender (e.g. incomplete or idiosyncratic language production), occur during transmission (e.g. background noise or signal processing) or be internal to the receiver (e.g. poor grasp of the language or sensory impairment). The extent to which these factors interact to generate adverse conditions may differ across the lifespan. Recent work has shown that successful speech communication under adverse conditions is associated with good cognitive capacity including efficient working memory and executive abilities such as updating and inhibition. Further, frontoparietal networks associated with working memory and executive function have been shown to be activated to a greater degree when it is harder to achieve speech comprehension. To date, less work has focused on sign language communication under adverse conditions or the role of gestures accompanying speech communication under adverse conditions. It has been proposed that the role of working memory in communication under such conditions is to keep fragments of an incomplete signal in mind, updating them as appropriate and inhibiting irrelevant information, until an adequate match can be achieved with lexical and semantic representations held in long term memory. Recent models of working memory highlight an episodic buffer whose role is the multimodal integration of information from the senses and long term memory. It is likely that the episodic buffer plays a key role in communication under adverse conditions. The aim of this research topic is to draw together multiple perspectives on communication under adverse conditions including empirical and theoretical approaches. This will facilitate a scientific exchange among individual scientists and groups studying different aspects of communication under adverse conditions and/or the role of cognition in communication. As such, this topic belongs firmly within the field of Cognitive Hearing Science. Exchange of ideas among scientists with different perspectives on these issues will allow researchers to identify and highlight the way in which different internal and external factors interact to make communication in different modalities more or less successful across the lifespan. Such exchange is the forerunner of broader dissemination of results which ultimately, may make it possible to take measures to reduce adverse conditions, thus facilitating communication. Such measures might be implemented in relation to the built environment, the design of hearing aids and public awareness.
Healthy ageing can lead to declines in both perceptual and cognitive functions. Impaired perception, such as that resulting from hearing loss or reduced visual or tactile resolution, increases demands on ‘higher-level’ cognitive functions to cope or compensate. It is possible, for example, to use focused attention to overcome perceptual limitations. Unfortunately, cognitive functions also decline in old age. This can mean that perceptual impairments are exacerbated by cognitive decline, and vice versa, but also means that interventions aimed at one type of decline can lead to improvements in the other. Just as improved cognition can ameliorate perceptual deficits, improving the stimulus can help offset cognitive deficits. For example, making directions and routes easy to follow can help compensate for declines in navigation abilities. In this Topic, we bring together papers from both auditory and visual researchers that address the interaction between perception and cognition in the ageing brain. Many of the studies demonstrate that a broadening of representations or increased reliance on gist underlie perceptual and cognitive age-related declines. There is also clear evidence that impaired perception is associated with poor cognition although, encouragingly, it can also be seen that good perception is associated with better cognition. Compensatory cognitive strategies were less successful in improving perception than might be expected. We also present papers which highlight important methodological considerations that are required when studying the older brain.
A clear, engaging writing style, hundreds of full-color images, and new information throughout make Volpe's Neurology of the Newborn, 6th Edition, an indispensable resource for those who provide care for neonates with neurological conditions. World authority Dr. Joseph Volpe, along with Dr. Terrie E. Inder and other distinguished editors, continue the unparalleled clarity and guidance you've come to expect from the leading reference in the field – keeping you up to date with today's latest advances in diagnosis and management, as well as the many scientific and technological advances that are revolutionizing neonatal neurology. - Provides comprehensive coverage of neonatal neurology, solely written by the field's founding expert, Dr. Joseph Volpe - for a masterful, cohesive source of answers to any question that arises in your practice. - Focuses on clinical evaluation and management, while also examining the many scientific and technological advances that are revolutionizing neonatal neurology. - Organizes disease-focused chapters by affected body region for ease of reference. - Features a brand new, full-color design with hundreds of new figures, tables, algorithms, and micrographs. - Includes two entirely new chapters: Neurodevelopmental Follow-Up and Stroke in the Newborn; a new section on Neonatal Seizures; and an extensively expanded section on Hypoxic-Ischemia and Other Disorders. - Showcases the experience and knowledge of a new editorial team, led by Dr. Joseph Volpe and Dr. Terrie E. Inder, Chair of the Department of Pediatric Newborn Medicine at Brigham and Women's Hospital, all of whom bring a wealth of insight to this classic text. - Offers comprehensive updates from cover to cover to reflect all of the latest information regarding the development of the neural tube; prosencephalic development; congenital hydrocephalus; cerebellar hemorrhage; neuromuscular disorders and genetic testing; and much more. - Uses an improved organization to enhance navigation. - Expert ConsultTM eBook version included with purchase. This enhanced eBook experience allows you to search all of the text, figures, Q&As, and references from the book on a variety of devices.