Download Free Interaction Between Axisymmetric And Multilobed Creep Buckling Of Circular Cylindrical Shells In Axial Compression Book in PDF and EPUB Free Download. You can read online Interaction Between Axisymmetric And Multilobed Creep Buckling Of Circular Cylindrical Shells In Axial Compression and write the review.

The present theoretical investigation studies the effect of small multilobed initial deviations from the exact shape upon the deformations and the critical time of a thin-walled circular cylindrical shell which was manufactured with initial axisymmetric deformations. To facilitate the analytical work, the actual solid wall of the shell is imagined to be replaced by an equivalent sandwich wall. The general equilibrium equations derived for shallow shells are expressed in terms of the stresses and deviations corresponding to the equivalent sandwich model. The radial displacement as well as the meridional, circumferential and membrane shear stresses are expressed by finite Fourier series for each face of the sandwich model. A closed form solution is found for the multilobed deformation rates and for the critical time as well. A numerical integration of the deformation rates shows, for a given cylinder, that the multilobed creep buckling deformations grow much faster than the axisymmetric. (Modified author abstract).
The purpose of the investigation described in this paper is the study of the effect of very small nonaxisymmetric initial deviations from the exact shape upon the deformations and the critical time of a thin-walled circular cylindrical shell which was manufactured with larger initial deviations of an axisymmetric type. The calculations are carried out in a manner similar to that of a recent paper by the senior author. It is assumed that all the deformations are due to nonlinear steady creep governed by Odqvist's law. In consequence of the nonlinearity of the constitutive equation and the use of three terms in the expressions for the deformations and the stresses the trigonometric calculations become so complicated that they must be carried out by means of the high-speed digital computer. For this purpose use is made of the 'REDUCE' program. It is found that in a particular case the critical time of the shell is reduced to about one-half the original value when one adds to the small axially symmetric component of the initial deviations a nonaxisymmetric component which is ten orders of magnitude smaller. The reduction in critical time is represented by a factor of about 1/15 when the amplitudes of the axisymmetric and nonaxisymmetric initial deviations are equal. (Author).
The problem of creep induced instability in structures is discussed. A linearization procedure proposed by Onat and Wang (Creep in Structures, Springer-Verlag, 1962, p. 125) and generalized by Carlson (Recent Progress in Applied Mechanics - The Folke Odgvist Volume, Almqvist and Wiksell, Gebers, Stockholm, 1966) is applied to the problem of the creep buckling of circular cylindrical shells under uniform, axial compression. Solutions for axisymmetric creep buckling of semi-infinite and infinite cylinders are obtained and a comparison with experimental data is made. In accordance with expectations based on the criterion for instability, the theoretically predicted critical times are smaller than the experimentally observed critical times.
Test equipment suitable for the study of the creep buckling of axially compressed circular cylindrical shells was developed and built. With the aid of this equipment, thirty-one electroformed nickel cylinders of radius-to-thickness ratios ranging from 30.6 to 96.4 were tested at a temperature of 650F. The loading of each specimen was interrupted usually once, and in some cases twice, to permit an exact measurement of the creep deformations produced by the axial compression. Diagrams showing the deformed shapes of eight generators of each specimen are presented at two or three stages of the creep buckling process. Inspection of the figures reveals that specimens of this kind either buckle axisymmetrically, or begin the creep buckling process in a axisymmetric manner but change over to a multilobed pattern in later stages of the deformations. (Author).
Experimental results obtained with 31 nickel circular cylindrical shell specimens are evaluated in the light of the theory. The test results have already been reported in SUDAAR No. 415. The experimental creep buckling times obtained in axial compression at a temperature of 650F were found to be in reasonable agreement with the theoretical formulas. (Author).
The object of this book is to clarify the whole aspect of the basic problems concerning the elastic stability of of circular cylindrical shells under typical loading conditions. The book deals with buckling, postbuckling and initial postbuckling problems under one of the three fundamental loads, that is, torsion, pressure and compression. The emphases are placed on the accurate analysis and comprehensive numeral results for the buckling problem, experimental verification of the theoretical analysis for the postbuckling problem and clarification of the range of applicability of the perturbation method for the analysis of initial postbuckling behaviors and imperfection sensitivity. The problems under typical combined loads as well as the influence of the contained liquid are also clarified.
This volume consists of papers presented at the International Colloquium on Buckling of Shell Structures, on Land, in the Sea and in the Air, Lyon, France, 17-19 September 1991.