Download Free Intensification Of Biobased Processes Book in PDF and EPUB Free Download. You can read online Intensification Of Biobased Processes and write the review.

In recent years bioprocessing has increased in popularity and importance, however, bioprocessing still poses various important techno-economic and environmental challenges, such as product yields, excessive energy consumption for separations in highly watery systems, batch operation or the downstream processing bottlenecks in the production of biopharmaceutical products. Many of those challenges can be addressed by application of different process intensification technologies discussed in the present book. The first book dedicated entirely to this area, Intensification of Biobased Processes provides a comprehensive overview of modern process intensification technologies used in bioprocessing. The book focusses on four different categories of biobased products: bio-fuels and platform chemicals; cosmeceuticals; food products; and polymers and advanced materials. It will cover various intensification aspects of the processes concerned, including (bio)reactor intensification; intensification of separation, recovery and formulation operations; and process integration. This is an invaluable source of information for researchers and industrialists working in chemical engineering, biotechnology and process engineering.
Improvements in Bio-Based Building Blocks Production Through Process Intensification and Sustainability Concepts discusses new information on the production and cost of bio-based building blocks. From a technical point-of-view, almost all industrial materials made from fossil resources can be substituted using bio-based counterparts. However, the cost of bio-based production in many cases exceeds the cost of petrochemical production. In addition, new products must be proven to perform at least as good as their petrochemical equivalents, have a lower environmental impact, meet consumer demand for environmentally-friendly products, factor in population growth, and account for limited supplies of non-renewables. This book outlines the application of process intensification techniques which allow for the generation of clean, efficient and economical processes for bio-based chemical blocks production. - Includes synthesis and process design strategies for intensified processes - Describes multi-objective optimization applied to the production of bio-based building blocks - Presents the controllability of processes where the production of bio-based building blocks is involved - Provides examples using aspen and MATLAB - Introduces several sustainable indexes to evaluate production processes - Presents process intensification techniques to improve performance in productive processes
The first guide to compile current research and frontline developments in the science of process intensification (PI), Re-Engineering the Chemical Processing Plant illustrates the design, integration, and application of PI principles and structures for the development and optimization of chemical and industrial plants. This volume updates professionals on emerging PI equipment and methodologies to promote technological advances and operational efficacy in chemical, biochemical, and engineering environments and presents clear examples illustrating the implementation and application of specific process-intensifying equipment and methods in various commercial arenas.
Intensified processes have found widespread application in the chemical and petrochemical industries. The use of intensified systems allows for a reduction of operating costs and supports the “greening” of chemical processes. However, the design of intensified equipment requires special methodologies. This book describes the fundamentals and applications of these design methods, making it a valuable resource for use in both industry and academia.
The Handbook of Microalgae-based Processes and Products provides a complete overview of all aspects involved in the production and utilization of microalgae resources at commercial scale. Divided into four parts (fundamentals, microalgae-based processes, microalgae-based products, and engineering approaches applied to microalgal processes and products), the book explores the microbiology and metabolic aspects of microalgae, microalgal production systems, wastewater treatment based in microalgae, CO2 capture using microalgae, microalgae harvesting techniques, and extraction and purification of biomolecules from microalgae. It covers the largest number of microalgal products of commercial relevance, including biogas, biodiesel, bioethanol, biohydrogen, single-cell protein, single-cell oil, biofertilizers, pigments, polyunsaturated fatty acids, bioactive proteins, peptides and amino acids, bioactive polysaccharides, sterols, bioplastics, UV-screening compounds, and volatile organic compounds. Moreover, it presents and discusses the available engineering tools applied to microalgae biotechnology, such as process integration, process intensification, and techno-economic analysis applied to microalgal processes and products, microalgal biorefineries, life cycle assessment, and exergy analysis of microalgae-based processes and products. The coverage of a broad range of potential microalgae processes and products in a single volume makes this handbook an indispensable reference for engineering researchers in academia and industry in the fields of bioenergy, sustainable development, and high-value compounds from biomass, as well as graduate students exploring those areas. Engineering professionals in bio-based industries will also find valuable information here when planning or implementing the use of microalgal technologies. - Covers theoretical background information and results of recent research. - Discusses all commercially relevant microalgae-based processes and products. - Explores the main emerging engineering tools applied to microalgae processes, including techno-economic analysis, process integration, process intensification, life cycle assessment, and exergy analyses.
Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing Explore new trends in continuous biomanufacturing with contributions from leading practitioners in the field With the increasingly widespread acceptance and investment in the ??technology, the last decade has demonstrated the utility of continuous ??processing in the pharmaceutical industry. In Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing, distinguished biotechnologist Dr. Ganapathy Subramanian delivers a comprehensive exploration of the potential of the continuous processing of biological products and discussions of future directions in advancing continuous processing to meet new challenges and demands in the manufacture of therapeutic products. A stand-alone follow-up to the editor’s Continuous Biomanufacturing: Innovative Technologies and Methods published in 2017, this new edited volume focuses on critical aspects of process intensification, process control, and the digital transformation of biopharmaceutical processes. In addition to topics like the use of multivariant data analysis, regulatory concerns, and automation processes, the book also includes: Thorough introductions to capacitance sensors to control feeding strategies and the continuous production of viral vaccines Comprehensive explorations of strategies for the continuous upstream processing of induced microbial systems Practical discussions of preparative hydrophobic interaction chromatography and the design of modern protein-A-resins for continuous biomanufacturing In-depth examinations of bioprocess intensification approaches and the benefits of single use for process intensification Perfect for biotechnologists, bioengineers, pharmaceutical engineers, and process engineers, Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing is also an indispensable resource for chemical engineers seeking a one-stop reference on continuous biomanufacturing.
This book will provide researchers and graduate students with an overview of the recent developments and applications of process intensification in chemical engineering. It will also allow the readers to apply the available intensification techniques to their processes and specific problems. The content of this book can be readily adopted as part of special courses on process control, design, optimization and modelling aimed at senior undergraduate and graduate students. This book will be a useful resource for researchers in process system engineering as well as for practitioners interested in applying process intensification approaches to real-life problems in chemical engineering and related areas.
Sustainable development is an area that has world-wide appeal, from developed industrialized countries to the developing world. Development of innovative technologies to achieve sustainability is being addressed by many European countries, the USA and also China and India. The need for chemical processes to be safe, compact, flexible, energy efficient, and environmentally benign and conducive to the rapid commercialization of new products poses new challenges for chemical engineers. This book examines the newest technologies for sustainable development in chemical engineering, through careful analysis of the technical aspects, and discussion of the possible fields of industrial development. The book is broad in its coverage, and is divided into four sections: Energy Production, covering renewable energies, innovative solar technologies, cogeneration plants, and smart grids Process Intensification, describing why it is important in the chemical and petrochemical industry, the engineering approach, and nanoparticles as a smart technology for bioremediation Bio-based Platform Chemicals, including the production of bioethanol and biodiesel, bioplastics production and biodegradability, and biosurfactants Soil and Water Remediation, covering water management and re-use, and soil remediation technologies Throughout the book there are case studies and examples of industrial processes in practice.
This book is open access under a CC BY 4.0 license. This book defines the new field of "Bioeconomy" as the sustainable and innovative use of biomass and biological knowledge to provide food, feed, industrial products, bioenergy and ecological services. The chapters highlight the importance of bioeconomy-related concepts in public, scientific, and political discourse. Using an interdisciplinary approach, the authors outline the dimensions of the bioeconomy as a means of achieving sustainability. The authors are ideally situated to elaborate on the diverse aspects of the bioeconomy. They have acquired in-depth experience of interdisciplinary research through the university’s focus on “Bioeconomy”, its contribution to the Bioeconomy Research Program of the federal state of Baden-Württemberg, and its participation in the German Bioeconomy Council. With the number of bioeconomy-related projects at European universities rising, this book will provide graduate students and researchers with background information on the bioeconomy. It will familiarize scientific readers with bioeconomy-related terms and give scientific background for economists, agronomists and natural scientists alike.
Innovative Bio-Based Technologies for Environmental Remediation explores the recent applications of both the latest and broad practical and theoretical aspects of environmental remediation with an aim to combine various innovation-based biotechnology for waste management, waste minimization, and waste to economy. This book summarizes the recent progress of bio-based technologies for environmental remediation at both an experimental and a theoretical model level. An emphasis has been made on trends and the probable future of sustainable techniques to reduce waste and harmful compounds from the environment. Biological-based technologies have low operating costs and involve direct degradation of organic pollutants without the release of toxic intermediates. Recent applications covered in this book include process intensification in bio-based approaches, green technology, phytoremediation, biopolymers, biosurfactants for environmental applications, and other bio-based technologies with sustainable design and the future of remediation are also discussed. This book is an important reference source for environmental scientists and engineers who are seeking to improve their understanding of how bio-based technologies are playing an increasingly important role in environmental remediation. It brings together recent innovations and practices of bio-based technologies for environmental remediation, outlines major bio-based technologies, and discusses biopolymers and biosurfactants for environmental management.