Download Free Intelligent Robotic Systems Book in PDF and EPUB Free Download. You can read online Intelligent Robotic Systems and write the review.

Since the late 1960s, there has been a revolution in robots and industrial automation, from the design of robots with no computing or sensorycapabilities (first-generation), to the design of robots with limited computational power and feedback capabilities (second-generation), and the design of intelligent robots (third-generation), which possess diverse sensing and decision making capabilities. The development of the theory of intelligent machines has been developed in parallel to the advances in robot design. This theory is the natural outcome of research and development in classical control (1950s), adaptive and learning control (1960s), self-organizing control (1970s) and intelligent control systems (1980s). The theory of intelligent machines involves utilization and integration of concepts and ideas from the diverse disciplines of science, engineering and mathematics, and fields like artificial intelligence, system theory and operations research. The main focus and motivation is to bridge the gap between diverse disciplines involved and bring under a common cover several generic methodologies pertaining to what has been defined as machine intelligence. Intelligent robotic systems are a specific application of intelligent machines. They are complex computer controlled robotic systems equipped with a diverse set of visual and non visual sensors and possess decision making and problem solving capabilities within their domain of operation. Their modeling and control is accomplished via analytical and heuristic methodologies and techniques pertaining to generalized system theory and artificial intelligence. Intelligent Robotic Systems: Theory, Design and Applications, presents and justifies the fundamental concepts and ideas associated with the modeling and analysis of intelligent robotic systems. Appropriate for researchers and engineers in the general area of robotics and automation, Intelligent Robotic Systems is both a solid reference as well as a text for a graduate level course in intelligent robotics/machines.
Here is a comprehensive presentation of methodology for the design and synthesis of an intelligent complex robotic system, connecting formal tools from discrete system theory, artificial intelligence, neural network, and fuzzy logic. The necessary methods for solving real time action planning, coordination and control problems are described. A notable chapter presents a new approach to intelligent robotic agent control acting in a realworld environment based on a lifelong learning approach combining cognitive and reactive capabilities. Another key feature is the homogeneous description of all solutions and methods based on system theory formalism.
With the increasing applications of intelligent robotic systems in various ?elds, the - sign and control of these systems have increasingly attracted interest from researchers. This edited book entitled “Design and Control of Intelligent Robotic Systems” in the book series of “Studies in Computational Intelligence” is a collection of some advanced research on design and control of intelligent robots. The works presented range in scope from design methodologies to robot development. Various design approaches and al- rithms, such as evolutionary computation, neural networks, fuzzy logic, learning, etc. are included. We also would like to mention that most studies reported in this book have been implemented in physical systems. An overview on the applications of computational intelligence in bio-inspired robotics is given in Chapter 1 by M. Begum and F. Karray, with highlights of the recent progress in bio-inspired robotics research and a focus on the usage of computational intelligence tools to design human-like cognitive abilities in the robotic systems. In Chapter 2, Lisa L. Grant and Ganesh K. Venayagamoorthy present greedy search, particle swarm optimization and fuzzy logic based strategies for navigating a swarm of robots for target search in a hazardous environment, with potential applications in high-risk tasks such as disaster recovery and hazardous material detection.
Here is one of the first really thorough presentations on smart robots. Robots, machine vision systems, sensors, manipulators, expert systems, and artificial intelligence concepts combined in state-of-the-art computer integrated manufacturing systems. These "smart" robots increase produc tivity and improve the quality of our products. This comprehensive volume, which is extensively illustrated, provides a unique synthesis and overview of the emerging field of smart robots, the basic approaches for each of the constituents systems, the techniques used, applications, the descriptions of current hardware or software projects, a review of the state-of-the-art of the technology, current research and development efforts, and trends in the development of smart robots. All of the information has been compiled from a wide variety of knowledgeable sources and recent government reports. An extensive selection of photo graphs, diagrams and charts amplify this book. The contents of major chapters include: • Introduction to smart robots • Artificial intelligence for smart robots • Smart robot systems • Sensor-controlled robots • Machine vision systems • Robot manipulators • Natural language processing • Expert systems and • Computer integrated manufacturing Smart Robots presents the state-of-the-art in intelligent robots. It is designed to help the reader develop an understanding of industrial applications of smart robots as well as the new technological develop ments. Smart Robots is an outstanding introduction to the integration and application of machine vision systems, sensors, expert systems, and artificial intelligence technology.
As robotic systems make their way into standard practice, they have opened the door to a wide spectrum of complex applications. Such applications usually demand that the robots be highly intelligent. Future robots are likely to have greater sensory capabilities, more intelligence, higher levels of manual dexter ity, and adequate mobility, compared to humans. In order to ensure high-quality control and performance in robotics, new intelligent control techniques must be developed, which are capable of coping with task complexity, multi-objective decision making, large volumes of perception data and substantial amounts of heuristic information. Hence, the pursuit of intelligent autonomous robotic systems has been a topic of much fascinating research in recent years. On the other hand, as emerging technologies, Soft Computing paradigms consisting of complementary elements of Fuzzy Logic, Neural Computing and Evolutionary Computation are viewed as the most promising methods towards intelligent robotic systems. Due to their strong learning and cognitive ability and good tolerance of uncertainty and imprecision, Soft Computing techniques have found wide application in the area of intelligent control of robotic systems.
This book illustrates basic principles, along with the development of the advanced algorithms, to realize smart robotic systems. It speaks to strategies by which a robot (manipulators, mobile robot, quadrotor) can learn its own kinematics and dynamics from data. In this context, two major issues have been dealt with; namely, stability of the systems and experimental validations. Learning algorithms and techniques as covered in this book easily extend to other robotic systems as well. The book contains MATLAB- based examples and c-codes under robot operating systems (ROS) for experimental validation so that readers can replicate these algorithms in robotics platforms.
This book addresses dynamic modelling methodology and analyses of tree-type robotic systems. Such analyses are required to visualize the motion of a system without really building it. The book contains novel treatment of the tree-type systems using concept of kinematic modules and the corresponding Decoupled Natural Orthogonal Complements (DeNOC), unified representation of the multiple-degrees-of freedom-joints, efficient recursive dynamics algorithms, and detailed dynamic analyses of several legged robots. The book will help graduate students, researchers and practicing engineers in applying their knowledge of dynamics for analysis of complex robotic systems. The knowledge contained in the book will help one in virtual testing of robot operation, trajectory planning and control.
Discusses generic planning problems with robotics-specific considerations. Includes the recent results in reconfigurable robot planning, multiple robot planning, plan recovery, and planning in uncertain environments.
This book looks at multiagent systems that consist of teams of autonomous agents acting in real-time, noisy, collaborative, and adversarial environments. This book looks at multiagent systems that consist of teams of autonomous agents acting in real-time, noisy, collaborative, and adversarial environments. The book makes four main contributions to the fields of machine learning and multiagent systems. First, it describes an architecture within which a flexible team structure allows member agents to decompose a task into flexible roles and to switch roles while acting. Second, it presents layered learning, a general-purpose machine-learning method for complex domains in which learning a mapping directly from agents' sensors to their actuators is intractable with existing machine-learning methods. Third, the book introduces a new multiagent reinforcement learning algorithm—team-partitioned, opaque-transition reinforcement learning (TPOT-RL)—designed for domains in which agents cannot necessarily observe the state-changes caused by other agents' actions. The final contribution is a fully functioning multiagent system that incorporates learning in a real-time, noisy domain with teammates and adversaries—a computer-simulated robotic soccer team. Peter Stone's work is the basis for the CMUnited Robotic Soccer Team, which has dominated recent RoboCup competitions. RoboCup not only helps roboticists to prove their theories in a realistic situation, but has drawn considerable public and professional attention to the field of intelligent robotics. The CMUnited team won the 1999 Stockholm simulator competition, outscoring its opponents by the rather impressive cumulative score of 110-0.
Bionics evolved in the 1960s as a framework to pursue the development of artificial systems based on the study of biological systems. Numerous disciplines and technologies, including artificial intelligence and learningdevices, information processing, systems architecture and control, perception, sensory mechanisms, and bioenergetics, contributed to bionics research. This volume is based on a NATO Advanced Research Workshop within the Special Programme on Sensory Systems for Robotic Control, held in Il Ciocco, Italy, in June 1989. A consensus emerged at the workshop, and is reflected in the book, on the value of learning from nature in order to derive guidelines for the design of intelligent machines which operate in unstructured environments. The papers in the book are grouped into seven chapters: vision and dynamic systems, hands and tactile perception, locomotion, intelligent motor control, design technologies, interfacing robots to nervous systems, and robot societies and self-organization.