Download Free Intelligent Fractal Based Image Analysis Book in PDF and EPUB Free Download. You can read online Intelligent Fractal Based Image Analysis and write the review.

Fractals are infinite, complex patterns used in modeling physical and dynamic systems. Fractal theory research has increased across different fields of applications including engineering science, health science, and social science. Recent literature shows the vital role fractals play in digital image analysis, specifically in biomedical image processing. Fractal graphics is an interdisciplinary field that deals with how computers can be used to gain high-level understanding from digital images. Integrating artificial intelligence with fractal characteristics has resulted in new interdisciplinary research in the fields of pattern recognition and image processing analysis. Intelligent Fractal-Based Image Analysis: Application in Pattern Recognition and Machine Vision provides insights into the current strengths and weaknesses of different applications as well as research findings on fractal graphics in engineering and science applications. The book aims to improve the exchange of ideas and coherence between various core computing methods and highlight the relevance of related application areas for advanced as well as novice-user application. The book presents an in-depth look at core concepts, methodological aspects, and advanced feature opportunities, focusing on major real time applications in engineering science and health science. The book will appeal to researchers, data scientists, industry professionals, and graduate students in the fields of fractal graphics and its related applications. Investigates advanced fractal theories spanning neural networks, fuzzy logic, machine learning, deep learning, and hybrid intelligent systems in solving pattern recognition problems Explores the application of fractal theories to a wide range of medical image processing modalities Presents case studies that illustrate the application and integration of fractal theories into intelligent computing in the resolution of important pattern recognition and machine vision problems
Digital image processing is a field that is constantly improving. Gaining high-level understanding from digital images is a key requirement for computing. One aspect of study that is assisting with this advancement is fractal theory. This new science has gained momentum and popularity as it has become a key topic of research in the area of image analysis. Examining Fractal Image Processing and Analysis is an essential reference source that discusses fractal theory applications and analysis, including box-counting analysis, multi-fractal analysis, 3D fractal analysis, and chaos theory, as well as recent trends in other soft computing techniques. Featuring research on topics such as image compression, pattern matching, and artificial neural networks, this book is ideally designed for system engineers, computer engineers, professionals, academicians, researchers, and students seeking coverage on problem-oriented processing techniques and imaging technologies.
Digital image processing is a field that is constantly improving. Gaining high-level understanding from digital images is a key requirement for computing. One aspect of study that is assisting with this advancement is fractal theory. This new science has gained momentum and popularity as it has become a key topic of research in the area of image analysis. Examining Fractal Image Processing and Analysis is an essential reference source that discusses fractal theory applications and analysis, including box-counting analysis, multi-fractal analysis, 3D fractal analysis, and chaos theory, as well as recent trends in other soft computing techniques. Featuring research on topics such as image compression, pattern matching, and artificial neural networks, this book is ideally designed for system engineers, computer engineers, professionals, academicians, researchers, and students seeking coverage on problem-oriented processing techniques and imaging technologies.
Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems addresses different uncertain processes inherent in the complex systems, attempting to provide global and robust optimized solutions distinctively through multifarious methods, technical analyses, modeling, optimization processes, numerical simulations, case studies as well as applications including theoretical aspects of complexity. Foregrounding Multi-chaos, Fractal and Multi-fractional in the era of Artificial Intelligence (AI), the edited book deals with multi- chaos, fractal, multifractional, fractional calculus, fractional operators, quantum, wavelet, entropy-based applications, artificial intelligence, mathematics-informed and data driven processes aside from the means of modelling, and simulations for the solution of multifaceted problems characterized by nonlinearity, non-regularity and self-similarity, frequently encountered in different complex systems. The fundamental interacting components underlying complexity, complexity thinking, processes and theory along with computational processes and technologies, with machine learning as the core component of AI demonstrate the enabling of complex data to augment some critical human skills. Appealing to an interdisciplinary network of scientists and researchers to disseminate the theory and application in medicine, neurology, mathematics, physics, biology, chemistry, information theory, engineering, computer science, social sciences and other far-reaching domains, the overarching aim is to empower out-of-the-box thinking through multifarious methods, directed towards paradoxical situations, uncertain processes, chaotic, transient and nonlinear dynamics of complex systems. Constructs and presents a multifarious approach for critical decision-making processes embodying paradoxes and uncertainty. Includes a combination of theory and applications with regard to multi-chaos, fractal and multi-fractional as well as AI of different complex systems and many-body systems. Provides readers with a bridge between application of advanced computational mathematical methods and AI based on comprehensive analyses and broad theories.
Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students.
The book provides an insight into the advantages and limitations of the use of fractals in biomedical data. It begins with a brief introduction to the concept of fractals and other associated measures and describes applications for biomedical signals and images. Properties of biological data in relations to fractals and entropy, and the association with health and ageing are also covered. The book provides a detailed description of new techniques on physiological signals and images based on the fractal and chaos theory. The aim of this book is to serve as a comprehensive guide for researchers and readers interested in biomedical signal and image processing and feature extraction for disease risk analyses and rehabilitation applications. While it provides the mathematical rigor for those readers interested in such details, it also describes the topic intuitively such that it is suitable for audience who are interested in applying the methods to healthcare and clinical applications. The book is the outcome of years of research by the authors and is comprehensive and includes other reported outcomes.
This book is concerned with the theory and application of fractal geometry in digital imaging. Throughout the book, a series of new approaches to defining fractals are illustrated, such as the analysis of the fractal power spectrum and the use of fractional differentials. Several new algorithms and applications are also discussed and applied to real life images. Fractal Geometry in Digital imaging will appeal to postgraduates, researchers and practitioners in image processing, mathematics and computing, information technology and engineering.
Fractal analysis is becoming more and more common in all walks of life. This includes biomedical engineering, steganography and art. Writing one book on all these topics is a very difficult task. For this reason, this book covers only selected topics. Interested readers will find in this book the topics of image compression, groundwater quality, establishing the downscaling and spatio-temporal scale conversion models of NDVI, modelling and optimization of 3T fractional nonlinear generalized magneto-thermoelastic multi-material, algebraic fractals in steganography, strain induced microstructures in metals and much more. The book will definitely be of interest to scientists dealing with fractal analysis, as well as biomedical engineers or IT engineers. I encourage you to view individual chapters.
Computational intelligence based techniques have firmly established themselves as viable, alternate, mathematical tools for more than a decade. They have been extensively employed in many systems and application domains, among these signal processing, automatic control, industrial and consumer electronics, robotics, finance, manufacturing systems, electric power systems, and power electronics. Image processing is also an extremely potent area which has attracted the attention of many researchers who are interested in the development of new computational intelligence-based techniques and their suitable applications, in both research problems and in real-world problems. Part I of the book discusses several image preprocessing algorithms; Part II broadly covers image compression algorithms; Part III demonstrates how computational intelligence-based techniques can be effectively utilized for image analysis purposes; and Part IV shows how pattern recognition, classification and clustering-based techniques can be developed for the purpose of image inferencing. The book offers a unified view of the modern computational intelligence techniques required to solve real-world problems and it is suitable as a reference for engineers, researchers and graduate students.
Fractal analysis has entered a new era. The applications to different areas of knowledge have been surprising. Benoit Mandelbrot, creator of fractal geometry, would have been surprised by the use of fractal analysis presented in this book. Here we present the use of fractal geometry, in particular, fractal analysis in two sciences: health sciences and social sciences and humanities. Part 1 is Health Science. In it, we present the latest advances in cardiovascular signs, kidney images to determine cancer growth, EEG signals, magnetoencephalography signals, and photosensitive epilepsy. We show how it is possible to produce ultrasonic lenses or even sound focusing. In Part 2, we present the use of fractal analysis in social sciences and humanities. It includes anthropology, hierarchical scaling, human settlements, language, fractal dimension of different cultures, cultural traits, and Mesoamerican complexity. And in Part 3, we present a few useful tools for fractal analysis, such as graphs and correlation, self-affine and self-similar graphs, and correlation function. It is impossible to picture today's research without fractal geometry.