Download Free Intelligent Educational Machines Book in PDF and EPUB Free Download. You can read online Intelligent Educational Machines and write the review.

This book presents recent advances in intelligent educational machines. It will be of particular interest to engineers, researchers, and graduate students in Computational Intelligence.
How ed tech was born: Twentieth-century teaching machines--from Sidney Pressey's mechanized test-giver to B. F. Skinner's behaviorist bell-ringing box. Contrary to popular belief, ed tech did not begin with videos on the internet. The idea of technology that would allow students to "go at their own pace" did not originate in Silicon Valley. In Teaching Machines, education writer Audrey Watters offers a lively history of predigital educational technology, from Sidney Pressey's mechanized positive-reinforcement provider to B. F. Skinner's behaviorist bell-ringing box. Watters shows that these machines and the pedagogy that accompanied them sprang from ideas--bite-sized content, individualized instruction--that had legs and were later picked up by textbook publishers and early advocates for computerized learning. Watters pays particular attention to the role of the media--newspapers, magazines, television, and film--in shaping people's perceptions of teaching machines as well as the psychological theories underpinning them. She considers these machines in the context of education reform, the political reverberations of Sputnik, and the rise of the testing and textbook industries. She chronicles Skinner's attempts to bring his teaching machines to market, culminating in the famous behaviorist's efforts to launch Didak 101, the "pre-verbal" machine that taught spelling. (Alternate names proposed by Skinner include "Autodidak," "Instructomat," and "Autostructor.") Telling these somewhat cautionary tales, Watters challenges what she calls "the teleology of ed tech"--the idea that not only is computerized education inevitable, but technological progress is the sole driver of events.
This book examines, from a comparative perspective, the impact of the movement from the so-called knowledge-based economy towards the Intelligent Economy, which is premised upon the application of knowledge. This volume links the advent of this new technological revolution to the world of governance and policy formulation in education.
This book presents a practical, effective, and systematic approach to the measurement, assessment, and sensemaking of institutional performance. Included are strategies to measure and assess the performance of Curriculum, Learning, Instruction, Support Services, and Program Feasibility as well as a meaningful Environmental Scanning method.
Artificial Intelligence (AI) serves as a catalyst for transformation in the field of digital teaching and learning by introducing novel solutions to revolutionize all dimensions of the educational process, leading to individualized learning experiences, teachers playing a greater role as mentors, and the automation of all administrative processes linked to education. AI and machine learning are already contributing to and are expected to improve the quality of the educational process by providing advantages such as personalized and interactive tutoring with the ability to adjust the content and the learning pace of each individual student while assessing their performance and providing feedback. These shifts in the educational paradigm have a profound impact on the quality and the way we live, interact with each other, and define our values. Thus, there is a need for an earnest inquiry into the cultural repercussions of this phenomenon that extends beyond superficial analyses of AI-based applications in education. Revolutionizing Education in the Age of AI and Machine Learning addresses the need for a scholarly exploration of the cultural and social impacts of the rapid expansion of artificial intelligence in the field of education including potential consequences these impacts could have on culture, social relations, and values. The content within this publication covers such topics as AI and tutoring, role of teachers, physical education and sports, interactive E-learning and virtual laboratories, adaptive curricula development, support critical thinking, and augmented intelligence and it is designed for educators, curriculum developers, instructional designers, educational software developers, education consultants, academicians, administrators, researchers, and professionals.
A fresh look at a “robot-proof” education in the new age of generative AI. In 2017, Robot-Proof, the first edition, foresaw the advent of the AI economy and called for a new model of higher education designed to help human beings flourish alongside smart machines. That economy has arrived. Creative tasks that, seven years ago, seemed resistant to automation can now be performed with a simple prompt. As a result, we must now learn not only to be conversant with these technologies, but also to comprehend and deploy their outputs. In this revised and updated edition, Joseph Aoun rethinks the university’s mission for a world transformed by AI, advocating for the lifelong endeavor of a “robot-proof” education. Aoun puts forth a framework for a new curriculum, humanics, which integrates technological, data, and human literacies in an experiential setting, and he renews the call for universities to embrace lifelong learning through a social compact with government, employers, and learners themselves. Drawing on the latest developments and debates around generative AI, Robot-Proof is a blueprint for the university as a force for human reinvention in an era of technological change—an era in which we must constantly renegotiate the shifting boundaries between artificial intelligence and the capacities that remain uniquely human.
Table of contents
How might digital technology and notably smart technologies based on artificial intelligence (AI), learning analytics, robotics, and others transform education? This book explores such question. It focuses on how smart technologies currently change education in the classroom and the management of educational organisations and systems.
A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+
This book focuses on recent advances in maker education and in human-robot interaction and on the integration of intelligent educational robots (IER) in P-12 education. It covers various topics and trends about the evolution of maker education and the use of IER and artificial intelligence (AI) in P-12 education. This book offers an overview of recent research into the adoption, integration, advancements, and impact of IER and AI in education. It helps researchers, practitioners, professionals, and academicians of various scientific disciplines explore and better comprehend the state of the art of maker education, AI, and IER, their advancements, impact, and future potentials in education.