Download Free Intelligent Control And Applications For Robotics Book in PDF and EPUB Free Download. You can read online Intelligent Control And Applications For Robotics and write the review.

As robotic systems make their way into standard practice, they have opened the door to a wide spectrum of complex applications. Such applications usually demand that the robots be highly intelligent. Future robots are likely to have greater sensory capabilities, more intelligence, higher levels of manual dexter ity, and adequate mobility, compared to humans. In order to ensure high-quality control and performance in robotics, new intelligent control techniques must be developed, which are capable of coping with task complexity, multi-objective decision making, large volumes of perception data and substantial amounts of heuristic information. Hence, the pursuit of intelligent autonomous robotic systems has been a topic of much fascinating research in recent years. On the other hand, as emerging technologies, Soft Computing paradigms consisting of complementary elements of Fuzzy Logic, Neural Computing and Evolutionary Computation are viewed as the most promising methods towards intelligent robotic systems. Due to their strong learning and cognitive ability and good tolerance of uncertainty and imprecision, Soft Computing techniques have found wide application in the area of intelligent control of robotic systems.
Since the late 1960s, there has been a revolution in robots and industrial automation, from the design of robots with no computing or sensorycapabilities (first-generation), to the design of robots with limited computational power and feedback capabilities (second-generation), and the design of intelligent robots (third-generation), which possess diverse sensing and decision making capabilities. The development of the theory of intelligent machines has been developed in parallel to the advances in robot design. This theory is the natural outcome of research and development in classical control (1950s), adaptive and learning control (1960s), self-organizing control (1970s) and intelligent control systems (1980s). The theory of intelligent machines involves utilization and integration of concepts and ideas from the diverse disciplines of science, engineering and mathematics, and fields like artificial intelligence, system theory and operations research. The main focus and motivation is to bridge the gap between diverse disciplines involved and bring under a common cover several generic methodologies pertaining to what has been defined as machine intelligence. Intelligent robotic systems are a specific application of intelligent machines. They are complex computer controlled robotic systems equipped with a diverse set of visual and non visual sensors and possess decision making and problem solving capabilities within their domain of operation. Their modeling and control is accomplished via analytical and heuristic methodologies and techniques pertaining to generalized system theory and artificial intelligence. Intelligent Robotic Systems: Theory, Design and Applications, presents and justifies the fundamental concepts and ideas associated with the modeling and analysis of intelligent robotic systems. Appropriate for researchers and engineers in the general area of robotics and automation, Intelligent Robotic Systems is both a solid reference as well as a text for a graduate level course in intelligent robotics/machines.
With the increasing applications of intelligent robotic systems in various ?elds, the - sign and control of these systems have increasingly attracted interest from researchers. This edited book entitled “Design and Control of Intelligent Robotic Systems” in the book series of “Studies in Computational Intelligence” is a collection of some advanced research on design and control of intelligent robots. The works presented range in scope from design methodologies to robot development. Various design approaches and al- rithms, such as evolutionary computation, neural networks, fuzzy logic, learning, etc. are included. We also would like to mention that most studies reported in this book have been implemented in physical systems. An overview on the applications of computational intelligence in bio-inspired robotics is given in Chapter 1 by M. Begum and F. Karray, with highlights of the recent progress in bio-inspired robotics research and a focus on the usage of computational intelligence tools to design human-like cognitive abilities in the robotic systems. In Chapter 2, Lisa L. Grant and Ganesh K. Venayagamoorthy present greedy search, particle swarm optimization and fuzzy logic based strategies for navigating a swarm of robots for target search in a hazardous environment, with potential applications in high-risk tasks such as disaster recovery and hazardous material detection.
Driven by sustaining demands from industrial automation, space applications and the lack of labor forces, robotics has received increasing attention from researchers in the field of automation and control. Optimizing control schemes is critical to fully exploit the potential of industrial and daily-use robots. Usually, accuracy and repeatability are measured to evaluate the performance of a robot, and deviation of the two parameters from normal status would inevitably leads to positional error and creates a problem for the process. Moreover, the repeatability of a robot is different in various parts of the working envelope, fluctuating with speed and payload. Due to the inherent complexity, an advanced learning methodology is crucial to the self-learning and fast adaptation to disturbances.
Advanced robotics describes the use of sensor-based robotic devices which exploit powerful computers to achieve the high levels of functionality that begin to mimic intelligent human behaviour. The object of this book is to summarise developments in the base technologies, survey recent applications and highlight new advanced concepts which will influence future progress.
This two volume set LNAI 9834 and 9835 constitutes the refereed proceedings of the 9th International Conference on Intelligent Robotics and Applications, ICIRA 2016, held in Tokyo, Japan, in August 2016. The 114 papers presented were carefully reviewed and selected from 148 submissions. The papers are organized in topical sections such as Robot Control; Robot Mechanism, Robot Vision and Sensing; Planning, Localization, and Mapping; Interactive Intelligence; Cognitive Robotics; Bio-Inspired Robotics; Smart Material Based Systems; Mechatronics Systems for Nondestructive Testing; Social Robotics; Human Support Robotics; Assistive Robotics; Intelligent Space; Sensing and Monitoring in Environment and Agricultural Sciences; Human Data Analysis; Robot Hand.
This book offers a comprehensive introduction to intelligent control system design, using MATLAB simulation to verify typical intelligent controller designs. It also uses real-world case studies that present the results of intelligent controller implementations to illustrate the successful application of the theory. Addressing the need for systematic design approaches to intelligent control system design using neural network and fuzzy-based techniques, the book introduces the concrete design method and MATLAB simulation of intelligent control strategies; offers a catalog of implementable intelligent control design methods for engineering applications; provides advanced intelligent controller design methods and their stability analysis methods; and presents a sample simulation and Matlab program for each intelligent control algorithm. The main topics addressed are expert control, fuzzy logic control, adaptive fuzzy control, neural network control, adaptive neural control and intelligent optimization algorithms, providing several engineering application examples for each method.
A broadly accessible introduction to robotics that spans the most basic concepts and the most novel applications; for students, teachers, and hobbyists. The Robotics Primer offers a broadly accessible introduction to robotics for students at pre-university and university levels, robot hobbyists, and anyone interested in this burgeoning field. The text takes the reader from the most basic concepts (including perception and movement) to the most novel and sophisticated applications and topics (humanoids, shape-shifting robots, space robotics), with an emphasis on what it takes to create autonomous intelligent robot behavior. The core concepts of robotics are carried through from fundamental definitions to more complex explanations, all presented in an engaging, conversational style that will appeal to readers of different backgrounds. The Robotics Primer covers such topics as the definition of robotics, the history of robotics (“Where do Robots Come From?”), robot components, locomotion, manipulation, sensors, control, control architectures, representation, behavior (“Making Your Robot Behave”), navigation, group robotics, learning, and the future of robotics (and its ethical implications). To encourage further engagement, experimentation, and course and lesson design, The Robotics Primer is accompanied by a free robot programming exercise workbook that implements many of the ideas on the book on iRobot platforms. The Robotics Primer is unique as a principled, pedagogical treatment of the topic that is accessible to a broad audience; the only prerequisites are curiosity and attention. It can be used effectively in an educational setting or more informally for self-instruction. The Robotics Primer is a springboard for readers of all backgrounds—including students taking robotics as an elective outside the major, graduate students preparing to specialize in robotics, and K-12 teachers who bring robotics into their classrooms.
The emergence of fuzzy logic and its applications has dramatically changed the face of industrial control engineering. Over the last two decades, fuzzy logic has allowed control engineers to meet and overcome the challenges of developing effective controllers for increasingly complex systems with poorly defined dynamics. Today's engineers need a working knowledge of the principles and techniques of fuzzy logic-Intelligent Control provides it. The author first introduces the traditional control techniques and contrasts them with intelligent control. He then presents several methods of representing and processing knowledge and introduces fuzzy logic as one such method. He highlights the advantages of fuzzy logic over other techniques, indicates its limitations, and describes in detail a hierarchical control structure appropriate for use in intelligent control systems. He introduces a variety of applications, most in the areas of robotics and mechatronics but with others including air conditioning and process/production control. One appendix provides discussion of some advanced analytical concepts of fuzzy logic, another describes a commercially available software system for developing fuzzy logic application. Intelligent Control is filled with worked examples, exercises, problems, and references. No prior knowledge of the subject nor advanced mathematics are needed to comprehend much of the book, making it well-suited as a senior undergraduate or first-year graduate text and a convenient reference tool for practicing professionals.
Proportional-integral-derivative (PID) control is widely used in biomedical and industrial robot manipulators. An integrator in a PID controller reduces the bandwidth of the closed-loop system, leads to less-effective transient performance, and may even destroy stability. Many robotic manipulators use proportional-derivative (PD) control with gravity and friction compensations, but improved gravity and friction models are needed. The introduction of intelligent control in these systems has dramatically changed the face of biomedical and industrial control engineering. PID Control with Intelligent Compensation for Exoskeleton Robots shows readers how to combine traditional PD/PID control techniques with intelligent control. Dr. Wen Yu presents several leading-edge methods for designing neural and fuzzy compensators with high-gain velocity observers for PD control using Lyapunov stability. PD/PID using intelligent compensation has proven much more effective than other model-based compensations. PID Control with Intelligent Compensation for Exoskeleton Robots shows readers how to use neural PD and neural PID controls to reduce integration gain, providing explicit conditions on how to select linear PID gains by using proof of semi global asymptotic stability and local asymptotic stability with a velocity observer. These conditions are applied in both task and joint spaces, with PID controllers compensated by neural networks. Discusses novel PD and PID controllers for biomedical and industrial robotic applications, demonstrating how PD and PID with intelligent compensation is more effective than other model-based compensations Presents a stability analysis of this book for industrial linear PID Includes practical applications of robotic PD/PID control such as serial sliding mode, explicit conditions for linear PID, and high gain observers for neural PD control Includes applied exoskeleton applications and Matlab code for simulations and applications