Download Free Intelligent Assistive Robots Book in PDF and EPUB Free Download. You can read online Intelligent Assistive Robots and write the review.

This book deals with the growing challenges of using assistive robots in our everyday activities along with providing intelligent assistive services. The presented applications concern mainly healthcare and wellness such as helping elderly people, assisting dependent persons, habitat monitoring in smart environments, well-being, security, etc. These applications reveal also new challenges regarding control theory, mechanical design, mechatronics, portability, acceptability, scalability, security, etc.
The increasingly widespread implementation and use of intelligent assistive technologies (IATs) is reshaping dementia care. This volume provides an up-to-date overview of the current state of IATs for dementia care. The new essays collected here examine what IATs will mean for clinical practice and the ethical and regulatory challenges they will pose.
This book constitutes a carefully arranged selection of revised papers on assistive technology, first presented at related AAAI workshops between 1995 and 1998. The book is devoted to the advancement and use of AI stimulated technology that can help users extend their current range of cognitive and sensory abilities or overcome their motor disabilities. Among various issues in the interdisciplinary area of assistive technology, the papers address topics from natural language processing, planning, robotics, user interface design, computer vision, and learning.
Assistive robots are categorized as robots that share their area of work and interact with humans. Their main goals are to help, assist, and monitor humans, especially people with disabilities. To achieve these goals, it is necessary that these robots possess a series of characteristics, namely the abilities to perceive their environment from their sensors and act consequently, to interact with people in a multimodal manner, and to navigate and make decisions autonomously. This complexity demands computationally expensive algorithms to be performed in real time. The advent of high-end embedded processors has enabled several such algorithms to be processed concurrently and in real time. All these capabilities involve, to a greater or less extent, the use of machine learning techniques. In particular, in the last few years, new deep learning techniques have enabled a very important qualitative leap in different problems related to perception, navigation, and human understanding. In this Special Issue, several works are presented involving the use of machine learning techniques for assistive technologies, in particular for assistive robots.
Through expanded intelligence, the use of robotics has fundamentally transformed a variety of fields, including manufacturing, aerospace, medicine, social services, and agriculture. Continued research on robotic design is critical to solving various dynamic obstacles individuals, enterprises, and humanity at large face on a daily basis. Robotic Systems: Concepts, Methodologies, Tools, and Applications is a vital reference source that delves into the current issues, methodologies, and trends relating to advanced robotic technology in the modern world. Highlighting a range of topics such as mechatronics, cybernetics, and human-computer interaction, this multi-volume book is ideally designed for robotics engineers, mechanical engineers, robotics technicians, operators, software engineers, designers, programmers, industry professionals, researchers, students, academicians, and computer practitioners seeking current research on developing innovative ideas for intelligent and autonomous robotics systems.
This book contains a comprehensive overview of all current uses of robots in rehabilitation. The underlying principles in each application are provided. This is followed by a critical review of the technology available, of the utilization protocols, and of user studies, outcomes, and clinical evidence, if existing. Ethical and social implications of robot use are also discussed. The reader will have an in depth view of rehabilitation robots, from principles to practice.
The multidisciplinary issues involved in the development of biologically inspired intelligent robots include materials, actuators, sensors, structures, functionality, control, intelligence, and autonomy. This book reviews various aspects ranging from the biological model to the vision for the future.
In nowadays aging society, many people require mobility assistance. Sometimes, assistive devices need a certain degree of autonomy when users' disabilities difficult manual control. However, clinicians report that excessive assistance may lead to loss of residual skills and frustration. Shared control focuses on deciding when users need help and providing it. Collaborative control aims at giving just the right amount of help in a transparent, seamless way. This book presents the collaborative control paradigm. User performance may be indicative of physical/cognitive condition, so it is used to decide how much help is needed. Besides, collaborative control integrates machine and user commands so that people contribute to self-motion at all times. Collaborative control was extensively tested for 3 years using a robotized wheelchair at a rehabilitation hospital in Rome with volunteer inpatients presenting different disabilities, ranging from mild to severe. We also present a taxonomy of common metrics for wheelchair navigation and tests are evaluated accordingly. Obtained results are coherent both from a quantitative and qualitative point of view.
This self-contained book, written by active researchers, presents up-to-date information on smart maintenance strategies for human–robot interaction (HRI) and the associated applications of novel search algorithms in a single volume, eliminating the need to consult scattered resources. Unlike other books, it addresses maintaining a smart HRI from three dimensions, namely, hardware, cyberware, and hybrid-asset management, covering problems encountered in each through a wide variety of representative examples and elaborated illustrations. Further, the diverse mathematical models and intelligent systems constructions make the book highly practical. It enables readers interested in maintenance, robotics, and intelligent systems but perplexed by myriads of interrelated issues to grasp basic methodologies. At the same time, the referenced literature can be used as a roadmap for conducting deeper researches.