Download Free Intellectual Property Issues In Microbiology Book in PDF and EPUB Free Download. You can read online Intellectual Property Issues In Microbiology and write the review.

In the current era current era of significant innovations, science and technology are powerful tools improving human welfare through prosperity and sustainable development. The development of microbiology based industries in any given country is shaped by the characteristics of its technology—particularly its close relation to scientific knowledge, and by country-specific factors such as the level and nature of the scientific knowledge base, the institutional set-up, and the role assumed by the government, all of which influence the country's ability to exploit the new opportunities. This unique book presents an integrated approach for sustained innovation in various areas of microbiology. Focusing on the industrial and socio-legal implications of IPR in microbiological advances, it offers a comprehensive overview not only of the implications of IPR in omics-based research but also of the ethical and intellectual standards and how these can be developed for sustained innovation. The book is divided into three sections discussing current advances in microbiological innovations, recent intellectual property issues in agricultural, and pharmaceutical microbiology respectively. Integrating science and business, it offers a glimpse behind the scenes of the microbiology industry, and provides a detailed analysis of the foundations of the present day industry for students and professionals alike.
This book integrates a science and business approach to provide an introduction and an insider view of intellectual property issues within the biotech industry, with case studies and examples from developing economy markets. Broad in scope, this book covers key principles in pharmaceutical, industrial, and agricultural biotechnology within four parts. Part 1 details the principles of intellectual property and biotechnology. Part 2 covers plant biotechnology, including biotic and abiotic stress tolerance, GM foods in sustainable agriculture, microbial biodiversity and bioprospecting for improving crop health and productivity, and production and regulatory requirements of biopesticides and biofertilizers. The third part describes recent advances in industrial biotechnology, such as DNA patenting, and commercial viability of the CRISPR/Cas9 system in genome editing. The final part describes intellectual property issues in drug discovery and development of personalized medicine, and vaccines in biodefence. This book is an ideal resource for all postgraduates and researchers working in any branch of biotechnology that requires an overview of the recent developments of intellectual property frameworks in the biotech sector.
An Introduction to Ethical, Safety and Intellectual Property Rights Issues in Biotechnology provides a comprehensive look at the biggest technologies that have revolutionized biology since the early 20th century, also discussing their impact on society. The book focuses on issues related to bioethics, biosafety and intellectual property rights, and is written in an easy-to-understand manner for graduate students and early career researchers interested in the opportunities and challenges associated with advances in biotechnology. Important topics covered include the Human Genome Project, human cloning, rDNA technology, the 3Rs and animal welfare, bioterrorism, human rights and genetic discrimination, good laboratory practices, good manufacturing practices, the protection of biological material and much more. Full of relevant case studies, practical examples, weblinks and resources for further reading, this book offers an essential and holistic look at the ways in which biotechnology has affected our global society. - Provides a comprehensive look at the ethical, legal and social implications of biotechnology - Discusses the global efforts made to resolve issues - Incorporates numerous case studies to more clearly convey concepts and chart the development of guidelines and legislation regulating issues in biotechnology - Takes a straightforward approach to highlight and discuss both the benefits and risks associated with the latest biotechnologies
The United States is entering an era when, more than ever, the sharing of resources and information might be critical to scientific progress. Every dollar saved by avoiding duplication of efforts and by producing economies of scale will become increasingly important as federal funding enters an era of fiscal restraint. This book focuses on six diverse case studies that share materials or equipment with the scientific community at large: the American Type Culture Collection, the multinational coordinated Arabidopsis thaliana Genome Research Project, the Jackson Laboratory, the Washington Regional Primate Research Center, the Macromolecular Crystallography Resource at the Cornell High-Energy Synchrotron Source, and the Human Genome Center at Lawrence Livermore National Laboratory. The book also identifies common strengths and problems faced in the six cases, and presents a series of recommendations aimed at facilitating resource sharing in biomedical research.
Intellectual Property Issues in Nanotechnology focuses on the integrated approach for sustained innovation in various areas of nanotechnology. The theme of this book draws to a great extent on the industrial and socio-legal implications of intellectual property rights for nanotechnology-based advances. The book takes a comprehensive look not only at the role of intellectual property rights in omics-based research but also at the ethical and intellectual standards and how these can be developed for sustained innovation. This book attempts to collate and organize information on current attitudes and policies in several emerging areas of nanotechnology. Adopting a unique approach, this book integrates science and business for an inside view of the industry. Peering behind the scenes, it provides a thorough analysis of the foundations of the present day industry for students and professionals alike.
The Prokaryotes is a comprehensive, multi-authored, peer reviewed reference work on Bacteria and Achaea. This fourth edition of The Prokaryotes is organized to cover all taxonomic diversity, using the family level to delineate chapters. Different from other resources, this new Springer product includes not only taxonomy, but also prokaryotic biology and technology of taxa in a broad context. Technological aspects highlight the usefulness of prokaryotes in processes and products, including biocontrol agents and as genetics tools. The content of the expanded fourth edition is divided into two parts: Part 1 contains review chapters dealing with the most important general concepts in molecular, applied and general prokaryote biology; Part 2 describes the known properties of specific taxonomic groups. Two completely new sections have been added to Part 1: bacterial communities and human bacteriology. The bacterial communities section reflects the growing realization that studies on pure cultures of bacteria have led to an incomplete picture of the microbial world for two fundamental reasons: the vast majority of bacteria in soil, water and associated with biological tissues are currently not culturable, and that an understanding of microbial ecology requires knowledge on how different bacterial species interact with each other in their natural environment. The new section on human microbiology deals with bacteria associated with healthy humans and bacterial pathogenesis. Each of the major human diseases caused by bacteria is reviewed, from identifying the pathogens by classical clinical and non-culturing techniques to the biochemical mechanisms of the disease process. The 4th edition of The Prokaryotes is the most complete resource on the biology of prokaryotes. The following volumes are published consecutively within the 4th Edition: Prokaryotic Biology and Symbiotic Associations Prokaryotic Communities and Ecophysiology Prokaryotic Physiology and Biochemistry Applied Bacteriology and Biotechnology Human Microbiology Actinobacteria Firmicutes Alphaproteobacteria and Betaproteobacteria Gammaproteobacteria Deltaproteobacteria and Epsilonproteobacteria Other Major Lineages of Bacteria and the Archaea
Although we can't usually see them, microbes are essential for every part of human life-indeed all life on Earth. The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative energy, environmental remediation, and many others areas. Metagenomics allows researchers to look at the genomes of all of the microbes in an environment at once, providing a "meta" view of the whole microbial community and the complex interactions within it. It's a quantum leap beyond traditional research techniques that rely on studying-one at a time-the few microbes that can be grown in the laboratory. At the request of the National Science Foundation, five Institutes of the National Institutes of Health, and the Department of Energy, the National Research Council organized a committee to address the current state of metagenomics and identify obstacles current researchers are facing in order to determine how to best support the field and encourage its success. The New Science of Metagenomics recommends the establishment of a "Global Metagenomics Initiative" comprising a small number of large-scale metagenomics projects as well as many medium- and small-scale projects to advance the technology and develop the standard practices needed to advance the field. The report also addresses database needs, methodological challenges, and the importance of interdisciplinary collaboration in supporting this new field.
Microbial Endophytes: Functional Biology and Applications focuses on endophytic bacteria and fungi, including information on foundational endophytes and the latest advances in relevant genomics, proteomics and nanotechnological aspects. The book provides insights into the molecular aspects of plant endophytes and their interactions and applications, also exploring the potential commercialization of endophytic microorganisms and their use as bio fertilizers, in biocontrol, and as bioactive compounds for other sustainable applications. Coverage of important and emerging legal considerations relevant to those working to implement these important bacteria in production processes is also included. - Presents discussion on entry, colonization and the distribution of endophytic microorganisms - Explores the phyto immunological functions of endophytic microorganisms - Provides genomic insights on plant endophyte interaction - Identifies bio-commercial aspects of microbial endophytes for sustainable agriculture, including potential legal issues and IPR in microbial research
Microbial Resources: From Functional Existence in Nature to Applications provides an exciting interdisciplinary journey through the rapidly developing field of microbial resources, including relationships to aspects of microbiology. Covers the functional existence of microorganisms in nature, as well as the transfer of this knowledge for industrial and other applications. Examines the economic perspective of revealing the potential value of microbial material and figuring it into socio-economic value; legal perspectives; and how to organize a fair allotment of socio-economic benefits to all stakeholders who have effectively contributed to the preservation, study, and exploitation of microbiological material. - Covers aspects of foundational information related to microbiology, microbial ecology, and diversity, as well as new advances in microbial genomics - Provides information on the utilization of microbial resources in biotechnology - Covers legislative issues and related law in biodiscovery - Fills a need for a very broad audience and is a good resource for microbiologists seeking to know the extent of microbiology approaches, the policies associated with microbiology, and potential career paths for researchers - Has significant added value due to the inclusion of comprehensive coverage of the biology, ecology, biochemistry and international legislation surrounding these applications
Advances in next-generation sequencing technologies (NGS) are revolutionizing the field of food microbiology. Microbial whole genome sequencing (WGS) can provide identification, characterization, and subtyping of pathogens for epidemiological investigations at a level of precision previously not possible. This allows for connections and source attribution to be inferred between related isolates that may be overlooked by traditional techniques. The archiving and global sharing of genome sequences allow for retrospective analysis of virulence genes, antimicrobial resistance markers, mobile genetic elements and other novel genes. The advent of high-throughput 16S rRNA amplicon sequencing, in combination with the advantages offered by massively parallel second-generation sequencing for metagenomics, enable intensive studies on the microbiomes of food products and the impact of foods on the human microbiome. These studies may one day lead to the development of reliable culture-independent methods for food monitoring and surveillance. Similarly, RNA-seq has provided insights into the transcriptomes and hence the behaviour of bacterial pathogens in food, food processing environments, and in interaction with the host at a resolution previously not achieved through the use of microarrays and/or RT-PCR. The vast un-tapped potential applications of NGS along with its rapidly declining costs, give this technology the ability to contribute significantly to consumer protection, global trade facilitation, and increased food safety and security. Despite the rapid advances, challenges remain. How will NGS data be incorporated into our existing global food safety infrastructure? How will massive NGS data be stored and shared globally? What bioinformatics solutions will be used to analyse and optimise these large data sets? This Research Topic discusses recent advances in the field of food microbiology made possible through the use of NGS.