Download Free Integration Of World Knowledge For Natural Language Understanding Book in PDF and EPUB Free Download. You can read online Integration Of World Knowledge For Natural Language Understanding and write the review.

This book concerns non-linguistic knowledge required to perform computational natural language understanding (NLU). The main objective of the book is to show that inference-based NLU has the potential for practical large scale applications. First, an introduction to research areas relevant for NLU is given. We review approaches to linguistic meaning, explore knowledge resources, describe semantic parsers, and compare two main forms of inference: deduction and abduction. In the main part of the book, we propose an integrative knowledge base combining lexical-semantic, ontological, and distributional knowledge. A particular attention is payed to ensuring its consistency. We then design a reasoning procedure able to make use of the large scale knowledge base. We experiment both with a deduction-based NLU system and with an abductive reasoner. For evaluation, we use three different NLU tasks: recognizing textual entailment, semantic role labeling, and interpretation of noun dependencies.
A human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems. One of the original goals of artificial intelligence research was to endow intelligent agents with human-level natural language capabilities. Recent AI research, however, has focused on applying statistical and machine learning approaches to big data rather than attempting to model what people do and how they do it. In this book, Marjorie McShane and Sergei Nirenburg return to the original goal of recreating human-level intelligence in a machine. They present a human-inspired, linguistically sophisticated model of language understanding for intelligent agent systems that emphasizes meaning--the deep, context-sensitive meaning that a person derives from spoken or written language.
This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
This book encompasses a collection of topics covering recent advances that are important to the Arabic language in areas of natural language processing, speech and image analysis. This book presents state-of-the-art reviews and fundamentals as well as applications and recent innovations.The book chapters by top researchers present basic concepts and challenges for the Arabic language in linguistic processing, handwritten recognition, document analysis, text classification and speech processing. In addition, it reports on selected applications in sentiment analysis, annotation, text summarization, speech and font analysis, word recognition and spotting and question answering.Moreover, it highlights and introduces some novel applications in vital areas for the Arabic language. The book is therefore a useful resource for young researchers who are interested in the Arabic language and are still developing their fundamentals and skills in this area. It is also interesting for scientists who wish to keep track of the most recent research directions and advances in this area.
With worldwide spending estimates of over $97 billion by 2023, it is no surprise that Artificial Intelligence (A.I.) is one of the hottest topics at present in both the private and public spheres. Comprising of vital contributions from the most influential researchers in the field, including Daniel Dennett, Roman V. Yampolskiy, Frederic Gilbert, Stevan Harnad, David Pearce, Natasha Vita-More, Vernon Vinge and Ben Goertzel, ‘The Age of Artificial Intelligence: An Exploration’ discusses a variety of topics ranging from the various ethical issues associated with A.I. based technologies in terms of morality and law to subjects related to artificial consciousness, artistic creativity and intelligence. The volume is organized as follows: Section I is dedicated to reflections on the Intelligence of A.I., with chapters by Soenke Ziesche and Roman V. Yampolskiy, Stevan Harnad, Daniel Dennett and David Pearce. Next, Section II discusses the relationship between consciousness, simulation and artificial intelligence, with chapters by Gabriel Axel Montes and Ben Goertzel, Cody Turner, Nicole Hall and Steven S. Gouveia. Section III, dedicated to aesthetical creativity and language in artificial intelligence, includes chapters by Caterina Moruzzi, René Mogensen, Mariana Chinellato Ferreira and Kulvinder Panesar. The subsequent Section IV is on the Ethics of the Bionic Brain with the participation of Peter A. DePergola II, Tomislav Miletić and Frederic Gilbert, Aníbal M. Astobiza, Txetxu Ausin, Ricardo M. Ferrer and Stephen Rainey and Natasha Vita-More. Finally, Section V follows on the Ethics of Artificial Intelligence with chapters by Federico Pistono and Roman V. Yamploskiy, Hasse Hämäläinen, Vernon Vinge and Eray Özkural. The Age of Artificial Intelligence is imminent, if not here already. We should ensure that we invest in the right people and the right ideas to create the best possible solutions to the problems of the present and prepare for those of the future. This edited volume will be of particular interest to researchers in the field of A.I. as well of those in Cognitive Science (Philosophy of the Mind, Neuroscience, and Linguistics), Aesthetics and Arts, Applied Ethics and Political Philosophy / Law. Students studying the aforementioned topics can also benefit from its contents.