Download Free Integration Of Fuzzy Logic And Chaos Theory Book in PDF and EPUB Free Download. You can read online Integration Of Fuzzy Logic And Chaos Theory and write the review.

The 1960s were perhaps a decade of confusion, when scientists faced d- culties in dealing with imprecise information and complex dynamics. A new set theory and then an in?nite-valued logic of Lot? A. Zadeh were so c- fusing that they were called fuzzy set theory and fuzzy logic; a deterministic system found by E. N. Lorenz to have random behaviours was so unusual that it was lately named a chaotic system. Just like irrational and imaginary numbers, negative energy, anti-matter, etc., fuzzy logic and chaos were gr- ually and eventually accepted by many, if not all, scientists and engineers as fundamental concepts, theories, as well as technologies. In particular, fuzzy systems technology has achieved its maturity with widespread applications in many industrial, commercial, and technical ?elds, ranging from control, automation, and arti?cial intelligence to image/signal processing,patternrecognition,andelectroniccommerce.Chaos,ontheother hand,wasconsideredoneofthethreemonumentaldiscoveriesofthetwentieth century together with the theory of relativity and quantum mechanics. As a very special nonlinear dynamical phenomenon, chaos has reached its current outstanding status from being merely a scienti?c curiosity in the mid-1960s to an applicable technology in the late 1990s. Finding the intrinsic relation between fuzzy logic and chaos theory is certainlyofsigni?cantinterestandofpotentialimportance.Thepast20years have indeed witnessed some serious explorations of the interactions between fuzzylogicandchaostheory,leadingtosuchresearchtopicsasfuzzymodeling of chaotic systems using Takagi–Sugeno models, linguistic descriptions of chaotic systems, fuzzy control of chaos, and a combination of fuzzy control technology and chaos theory for various engineering practices.
This book presents the fundamental concepts of fuzzy logic and fuzzy control, chaos theory and chaos control. It also provides a definition of chaos on the metric space of fuzzy sets. The book raises many questions and generates a great potential to attract more attention to combine fuzzy systems with chaos theory. In this way it contains important seeds for future scientific research and engineering applications.
Nowadays, voluminous textbooks and monographs in fuzzy logic are devoted only to separate or some combination of separate facets of fuzzy logic. There is a lack of a single book that presents a comprehensive and self-contained theory of fuzzy logic and its applications. Written by world renowned authors, Lofti Zadeh, also known as the Father of Fuzzy Logic, and Rafik Aliev, who are pioneers in fuzzy logic and fuzzy sets, this unique compendium includes all the principal facets of fuzzy logic such as logical, fuzzy-set-theoretic, epistemic and relational. Theoretical problems are prominently illustrated and illuminated by numerous carefully worked-out and thought-through examples. This invaluable volume will be a useful reference guide for academics, practitioners, graduates and undergraduates in fuzzy logic and its applications.
In real management situations, uncertainty is inherently present in decision making. As such, it is increasingly imperative to research and develop new theories and methods of fuzzy sets. Theoretical and Practical Advancements for Fuzzy System Integration is a pivotal reference source for the latest scholarly research on the importance of expressing and measuring fuzziness in order to develop effective and practical decision making models and methods. Featuring coverage on an expansive range of perspectives and topics, such as fuzzy logic control, intuitionistic fuzzy set theory, and defuzzification, this book is ideally designed for academics, professionals, and researchers seeking current research on theoretical frameworks and real-world applications in the area of fuzzy sets and systems.
How far can you take fuzzy logic, the brilliant conceptual framework made famous by George Klir? With this book, you can find out. The authors of this updated edition have extended Klir’s work by taking fuzzy logic into even more areas of application. It serves a number of functions, from an introductory text on the concept of fuzzy logic to a treatment of cutting-edge research problems suitable for a fully paid-up member of the fuzzy logic community.
This edited volume contains ten papers on the subject of fuzzy technology. Fuzzy technology emerged as a combination of fuzzy sets theory, fuzzy logic and fuzzy-based reasoning. As a technology it gained a very practical meaning through thousands of applications in different theoretical as well as practical disciplines, covering mathematics, physics, chemistry, biology, life science, social science, economy, computer science, and (foremost) electrical, electronic, mechanical, nuclear, chemical, textile, aeronautic, ocean, and many other engineering disciplines. The goal of this book is to create an interest in fuzzy technology among researchers, engineers, professionals and students involved in the research and development in the broad area of artificial intelligence. This book is also intended to bring the reader up-to-date in the area of implementations and applications of fuzzy technology, as well as to generate and stimulate new research ideas in this area. It may inspire and motivate the researcher in new directions, as well as creating a force for new efforts to make a fuzzy technology commonly known and used in science and engineering. This volume appears at a time of unprecedented research interest in the field of fuzzy technology. I intentionally wrote research due to the events that have occurred during the last couple of years. To be more specific, I should describe this interest geographically.
The concept of “chaos”, and chaos theory, though it is a field of study specifically in the field of mathematics with applications in physics, engineering, economics, management, and education, has also recently taken root in the social sciences. As a method of analyzing the way in which the digital age has connected society more than ever, chaos and complexity theory serves as a tactic to tie world events and cope with the information overload that is associated with heightened social connectivity. The Handbook of Research on Chaos and Complexity Theory in the Social Sciences explores the theories of chaos and complexity as applied to a variety of disciplines including political science, organizational and management science, economics, and education. Presenting diverse research-based perspectives on mathematical patterns in the world system, this publication is an essential reference source for scholars, researchers, mathematicians, social theorists, and graduate-level students in a variety of disciplines.
In the early 1970s, fuzzy systems and fuzzy control theories added a new dimension to control systems engineering. From its beginnings as mostly heuristic and somewhat ad hoc, more recent and rigorous approaches to fuzzy control theory have helped make it an integral part of modern control theory and produced many exciting results. Yesterday's "art
The analysis and control of complex systems have been the main motivation for the emergence of fuzzy set theory since its inception. It is also a major research field where many applications, especially industrial ones, have made fuzzy logic famous. This unique handbook is devoted to an extensive, organized, and up-to-date presentation of fuzzy systems engineering methods. The book includes detailed material and extensive bibliographies, written by leading experts in the field, on topics such as: Use of fuzzy logic in various control systems. Fuzzy rule-based modeling and its universal approximation properties. Learning and tuning techniques for fuzzy models, using neural networks and genetic algorithms. Fuzzy control methods, including issues such as stability analysis and design techniques, as well as the relationship with traditional linear control. Fuzzy sets relation to the study of chaotic systems, and the fuzzy extension of set-valued approaches to systems modeling through the use of differential inclusions. Fuzzy Systems: Modeling and Control is part of The Handbooks of Fuzzy Sets Series. The series provides a complete picture of contemporary fuzzy set theory and its applications. This volume is a key reference for systems engineers and scientists seeking a guide to the vast amount of literature in fuzzy logic modeling and control.
Since its inception 20 years ago the theory of fuzzy sets has advanced in a variety of ways and in many disciplines. Applications of this theory can be found in artificial intelligence, computer science, control engineering, decision theory, expert systems, logic, management science, operations research, pattern recognition, robotics and others. Theoretical advances, too, have been made in many directions, and a gap has arisen between advanced theoretical topics and applications, which often use the theory at a rather elementary level. The primary goal of this book is to close this gap - to provide a textbook for courses in fuzzy set theory and a book that can be used as an introduction. This revised book updates the research agenda, with the chapters of possibility theory, fuzzy logic and approximate reasoning, expert systems and control, decision making and fuzzy set models in operations research being restructured and rewritten. Exercises have been added to almost all chapters and a teacher's manual is available upon request.