Download Free Integrating Social And Behavioral Sciences Within The Weather Enterprise Book in PDF and EPUB Free Download. You can read online Integrating Social And Behavioral Sciences Within The Weather Enterprise and write the review.

Our ability to observe and forecast severe weather events has improved markedly over the past few decades. Forecasts of snow and ice storms, hurricanes and storm surge, extreme heat, and other severe weather events are made with greater accuracy, geographic specificity, and lead time to allow people and communities to take appropriate protective measures. Yet hazardous weather continues to cause loss of life and result in other preventable social costs. There is growing recognition that a host of social and behavioral factors affect how we prepare for, observe, predict, respond to, and are impacted by weather hazards. For example, an individual's response to a severe weather event may depend on their understanding of the forecast, prior experience with severe weather, concerns about their other family members or property, their capacity to take the recommended protective actions, and numerous other factors. Indeed, it is these factors that can determine whether or not a potential hazard becomes an actual disaster. Thus, it is essential to bring to bear expertise in the social and behavioral sciences (SBS)â€"including disciplines such as anthropology, communication, demography, economics, geography, political science, psychology, and sociologyâ€"to understand how people's knowledge, experiences, perceptions, and attitudes shape their responses to weather risks and to understand how human cognitive and social dynamics affect the forecast process itself. Integrating Social and Behavioral Sciences Within the Weather Enterprise explores and provides guidance on the challenges of integrating social and behavioral sciences within the weather enterprise. It assesses current SBS activities, describes the potential value of improved integration of SBS and barriers that impede this integration, develops a research agenda, and identifies infrastructural and institutional arrangements for successfully pursuing SBS-weather research and the transfer of relevant findings to operational settings.
How production and dissemination of weather forecasts weaves through and interacts with our cultural values and behavioral norms, with numerous sectors of our economy (e.g., agriculture, commerce, energy, and water management), with a wide array of public policies. The Committee was charged to offer guidance to government agencies and other institutions in the weather enterprise, on strategies for effectively integrating social and behavorial science knowledge and it application into meteorology, weather forecasting, and hazard preparedness.
Our ability to observe and forecast severe weather events has improved markedly over the past few decades. Forecasts of snow and ice storms, hurricanes and storm surge, extreme heat, and other severe weather events are made with greater accuracy, geographic specificity, and lead time to allow people and communities to take appropriate protective measures. Yet hazardous weather continues to cause loss of life and result in other preventable social costs. There is growing recognition that a host of social and behavioral factors affect how we prepare for, observe, predict, respond to, and are impacted by weather hazards. For example, an individual's response to a severe weather event may depend on their understanding of the forecast, prior experience with severe weather, concerns about their other family members or property, their capacity to take the recommended protective actions, and numerous other factors. Indeed, it is these factors that can determine whether or not a potential hazard becomes an actual disaster. Thus, it is essential to bring to bear expertise in the social and behavioral sciences (SBS)â€"including disciplines such as anthropology, communication, demography, economics, geography, political science, psychology, and sociologyâ€"to understand how people's knowledge, experiences, perceptions, and attitudes shape their responses to weather risks and to understand how human cognitive and social dynamics affect the forecast process itself. Integrating Social and Behavioral Sciences Within the Weather Enterprise explores and provides guidance on the challenges of integrating social and behavioral sciences within the weather enterprise. It assesses current SBS activities, describes the potential value of improved integration of SBS and barriers that impede this integration, develops a research agenda, and identifies infrastructural and institutional arrangements for successfully pursuing SBS-weather research and the transfer of relevant findings to operational settings.
The William and Flora Hewlett Foundation, understanding the need for policy makers at the national level to entrain the behavioral and social sciences in addressing the challenges of global climate change, called on the National Research Council to organize two workshops to showcase some of the decision-relevant contributions that these sciences have already made and can advance with future efforts. The workshops focused on two broad areas: (1) mitigation (behavioral elements of a strategy to reduce the net future human influence on climate) and (2) adaptation (behavioral and social determinants of societal capacity to minimize the damage from climate changes that are not avoided). Facilitating Climate Change Responses documents the information presented in the workshop presentations and discussions. This material illustrates some of the ways the behavioral and social sciences can contribute to the new era of climate research.
"The Digest Version of A Decadal Survey of the Social and Behavioral Sciences: A Research Agenda for Advancing Intelligence Analysis summarizes the most important ideas from the full report for the Intelligence Community to consider in the coming decade. This volume provides an overview of the primary opportunities that research in the social and behavioral sciences offers for strengthening national security, specifically the work of the intelligence analyst, and the conclusions and recommendations of the Committee on a Decadal Survey of Social and Behavioral Sciences for Applications to National Survey. This digest version is a succinct roadmap to the critical contribution researchers from these fields make to national security"--Publisher's description
This book is organized in two parts: the first part introduces the reader to all the concepts, tools and references that are required to start conducting research in behavioral computational social science. The methodological reasons for integrating the two approaches are also presented from the individual and separated viewpoints of the two approaches.The second part of the book, presents all the advanced methodological and technical aspects that are relevant for the proposed integration. Several contributions which effectively merge the computational and the behavioral approaches are presented and discussed throughout
"As is often noted, 'everyone talks about the weather, but no one does anything about it.' Not Bill Hooke! His thoughtful analysis of actions that we need to take to reduce the impacts of extreme weather is a must-read for everyone with an interest in the weather and climate." --Franklin W. Nutter, president, Reinsurance Association of America.
Climate change is occurring, is caused largely by human activities, and poses significant risks for-and in many cases is already affecting-a broad range of human and natural systems. The compelling case for these conclusions is provided in Advancing the Science of Climate Change, part of a congressionally requested suite of studies known as America's Climate Choices. While noting that there is always more to learn and that the scientific process is never closed, the book shows that hypotheses about climate change are supported by multiple lines of evidence and have stood firm in the face of serious debate and careful evaluation of alternative explanations. As decision makers respond to these risks, the nation's scientific enterprise can contribute through research that improves understanding of the causes and consequences of climate change and also is useful to decision makers at the local, regional, national, and international levels. The book identifies decisions being made in 12 sectors, ranging from agriculture to transportation, to identify decisions being made in response to climate change. Advancing the Science of Climate Change calls for a single federal entity or program to coordinate a national, multidisciplinary research effort aimed at improving both understanding and responses to climate change. Seven cross-cutting research themes are identified to support this scientific enterprise. In addition, leaders of federal climate research should redouble efforts to deploy a comprehensive climate observing system, improve climate models and other analytical tools, invest in human capital, and improve linkages between research and decisions by forming partnerships with action-oriented programs.
As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.
For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).