Download Free Integrating Social And Behavioral Sciences Within The Weather Enterprise Book in PDF and EPUB Free Download. You can read online Integrating Social And Behavioral Sciences Within The Weather Enterprise and write the review.

Our ability to observe and forecast severe weather events has improved markedly over the past few decades. Forecasts of snow and ice storms, hurricanes and storm surge, extreme heat, and other severe weather events are made with greater accuracy, geographic specificity, and lead time to allow people and communities to take appropriate protective measures. Yet hazardous weather continues to cause loss of life and result in other preventable social costs. There is growing recognition that a host of social and behavioral factors affect how we prepare for, observe, predict, respond to, and are impacted by weather hazards. For example, an individual's response to a severe weather event may depend on their understanding of the forecast, prior experience with severe weather, concerns about their other family members or property, their capacity to take the recommended protective actions, and numerous other factors. Indeed, it is these factors that can determine whether or not a potential hazard becomes an actual disaster. Thus, it is essential to bring to bear expertise in the social and behavioral sciences (SBS)â€"including disciplines such as anthropology, communication, demography, economics, geography, political science, psychology, and sociologyâ€"to understand how people's knowledge, experiences, perceptions, and attitudes shape their responses to weather risks and to understand how human cognitive and social dynamics affect the forecast process itself. Integrating Social and Behavioral Sciences Within the Weather Enterprise explores and provides guidance on the challenges of integrating social and behavioral sciences within the weather enterprise. It assesses current SBS activities, describes the potential value of improved integration of SBS and barriers that impede this integration, develops a research agenda, and identifies infrastructural and institutional arrangements for successfully pursuing SBS-weather research and the transfer of relevant findings to operational settings.
How production and dissemination of weather forecasts weaves through and interacts with our cultural values and behavioral norms, with numerous sectors of our economy (e.g., agriculture, commerce, energy, and water management), with a wide array of public policies. The Committee was charged to offer guidance to government agencies and other institutions in the weather enterprise, on strategies for effectively integrating social and behavorial science knowledge and it application into meteorology, weather forecasting, and hazard preparedness.
The intelligence community (IC) plays an essential role in the national security of the United States. Decision makers rely on IC analyses and predictions to reduce uncertainty and to provide warnings about everything from international diplomatic relations to overseas conflicts. In today's complex and rapidly changing world, it is more important than ever that analytic products be accurate and timely. Recognizing that need, the IC has been actively seeking ways to improve its performance and expand its capabilities. In 2008, the Office of the Director of National Intelligence (ODNI) asked the National Research Council (NRC) to establish a committee to synthesize and assess evidence from the behavioral and social sciences relevant to analytic methods and their potential application for the U.S. intelligence community. In Intelligence Analysis for Tomorrow: Advances from the Behavioral and Social Sciences, the NRC offers the Director of National Intelligence (DNI) recommendations to address many of the IC's challenges. Intelligence Analysis for Tomorrow asserts that one of the most important things that the IC can learn from the behavioral and social sciences is how to characterize and evaluate its analytic assumptions, methods, technologies, and management practices. Behavioral and social scientific knowledge can help the IC to understand and improve all phases of the analytic cycle: how to recruit, select, train, and motivate analysts; how to master and deploy the most suitable analytic methods; how to organize the day-to-day work of analysts, as individuals and teams; and how to communicate with its customers. The report makes five broad recommendations which offer practical ways to apply the behavioral and social sciences, which will bring the IC substantial immediate and longer-term benefits with modest costs and minimal disruption.
"The Digest Version of A Decadal Survey of the Social and Behavioral Sciences: A Research Agenda for Advancing Intelligence Analysis summarizes the most important ideas from the full report for the Intelligence Community to consider in the coming decade. This volume provides an overview of the primary opportunities that research in the social and behavioral sciences offers for strengthening national security, specifically the work of the intelligence analyst, and the conclusions and recommendations of the Committee on a Decadal Survey of Social and Behavioral Sciences for Applications to National Survey. This digest version is a succinct roadmap to the critical contribution researchers from these fields make to national security"--Publisher's description
The William and Flora Hewlett Foundation, understanding the need for policy makers at the national level to entrain the behavioral and social sciences in addressing the challenges of global climate change, called on the National Research Council to organize two workshops to showcase some of the decision-relevant contributions that these sciences have already made and can advance with future efforts. The workshops focused on two broad areas: (1) mitigation (behavioral elements of a strategy to reduce the net future human influence on climate) and (2) adaptation (behavioral and social determinants of societal capacity to minimize the damage from climate changes that are not avoided). Facilitating Climate Change Responses documents the information presented in the workshop presentations and discussions. This material illustrates some of the ways the behavioral and social sciences can contribute to the new era of climate research.
As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.
"As is often noted, 'everyone talks about the weather, but no one does anything about it.' Not Bill Hooke! His thoughtful analysis of actions that we need to take to reduce the impacts of extreme weather is a must-read for everyone with an interest in the weather and climate." --Franklin W. Nutter, president, Reinsurance Association of America.
Climate change is occurring, is caused largely by human activities, and poses significant risks for-and in many cases is already affecting-a broad range of human and natural systems. The compelling case for these conclusions is provided in Advancing the Science of Climate Change, part of a congressionally requested suite of studies known as America's Climate Choices. While noting that there is always more to learn and that the scientific process is never closed, the book shows that hypotheses about climate change are supported by multiple lines of evidence and have stood firm in the face of serious debate and careful evaluation of alternative explanations. As decision makers respond to these risks, the nation's scientific enterprise can contribute through research that improves understanding of the causes and consequences of climate change and also is useful to decision makers at the local, regional, national, and international levels. The book identifies decisions being made in 12 sectors, ranging from agriculture to transportation, to identify decisions being made in response to climate change. Advancing the Science of Climate Change calls for a single federal entity or program to coordinate a national, multidisciplinary research effort aimed at improving both understanding and responses to climate change. Seven cross-cutting research themes are identified to support this scientific enterprise. In addition, leaders of federal climate research should redouble efforts to deploy a comprehensive climate observing system, improve climate models and other analytical tools, invest in human capital, and improve linkages between research and decisions by forming partnerships with action-oriented programs.
This study recommends a definition of "decision support" that emphasizes communication rather than translation and a strategy by which the small NOAA Sectoral Applications Research program can advance decision support. The book emphasizes that seasonal climate forecasts provide fundamentally new kinds of information and that integrating this information into real-world decisions will require social innovations that are not easily accomplished. It recommends that the program invest in (a) research to identify and foster the innovations needed to make information about climate variability and change more usable in specific sectors, including research on the processes that influence success or failure in the creation of knowledge-action networks for making climate information; (b) workshops to identify, catalyze, and assess the potential of knowledge-action networks in particular resource areas or decision domains; and (c) pilot projects to create or enhance these networks for supporting decisions in climate-affected sectors. It recommends that evaluation of the program be addressed with a monitoring approach.
In anticipation of future environmental science and engineering challenges and technologic advances, EPA asked the National Research Council (NRC) to assess the overall capabilities of the agency to develop, obtain, and use the best available scientific and technologic information and tools to meet persistent, emerging, and future mission challenges and opportunities. Although the committee cannot predict with certainty what new environmental problems EPA will face in the next 10 years or more, it worked to identify some of the common drivers and common characteristics of problems that are likely to occur. Tensions inherent to the structure of EPA's work contribute to the current and persistent challenges faced by the agency, and meeting those challenges will require development of leading-edge scientific methods, tools, and technologies, and a more deliberate approach to systems thinking and interdisciplinary science. Science for Environmental Protection: The Road Ahead outlines a framework for building science for environmental protection in the 21st century and identified key areas where enhanced leadership and capacity can strengthen the agency's abilities to address current and emerging environmental challenges as well as take advantage of new tools and technologies to address them. The foundation of EPA science is strong, but the agency needs to continue to address numerous present and future challenges if it is to maintain its science leadership and meet its expanding mandates.