Download Free Integrating Research On The Graphical Representation Of Functions Book in PDF and EPUB Free Download. You can read online Integrating Research On The Graphical Representation Of Functions and write the review.

This volume focuses on the important mathematical idea of functions that, with the technology of computers and calculators, can be dynamically represented in ways that have not been possible previously. The book's editors contend that as result of recent technological developments combined with the integrated knowledge available from research on teaching, instruction, students' thinking, and assessment, curriculum developers, researchers, and teacher educators are faced with an unprecedented opportunity for making dramatic changes. The book presents content considerations that occur when the mathematics of graphs and functions relate to curriculum. It also examines content in a carefully considered integration of research that conveys where the field stands and where it might go. Drawing heavily on their own work, the chapter authors reconceptualize research in their specific areas so that this knowledge is integrated with the others' strands. This model for synthesizing research can serve as a paradigm for how research in mathematics education can -- and probably should -- proceed.
This volume focuses on the important mathematical idea of functions that, with the technology of computers and calculators, can be dynamically represented in ways that have not been possible previously. The book's editors contend that as result of recent technological developments combined with the integrated knowledge available from research on teaching, instruction, students' thinking, and assessment, curriculum developers, researchers, and teacher educators are faced with an unprecedented opportunity for making dramatic changes. The book presents content considerations that occur when the mathematics of graphs and functions relate to curriculum. It also examines content in a carefully considered integration of research that conveys where the field stands and where it might go. Drawing heavily on their own work, the chapter authors reconceptualize research in their specific areas so that this knowledge is integrated with the others' strands. This model for synthesizing research can serve as a paradigm for how research in mathematics education can -- and probably should -- proceed.
This fourth volume of Research in Collegiate Mathematics Education (RCME IV) reflects the themes of student learning and calculus. Included are overviews of calculus reform in France and in the U.S. and large-scale and small-scale longitudinal comparisons of students enrolled in first-year reform courses and in traditional courses. The work continues with detailed studies relating students' understanding of calculus and associated topics. Direct focus is then placed on instruction and student comprehension of courses other than calculus, namely abstract algebra and number theory. The volume concludes with a study of a concept that overlaps the areas of focus, quantifiers. The book clearly reflects the trend towards a growing community of researchers who systematically gather and distill data regarding collegiate mathematics' teaching and learning. This series is published in cooperation with the Mathematical Association of America.
Kaye Stacey‚ Helen Chick‚ and Margaret Kendal The University of Melbourne‚ Australia Abstract: This section reports on the organisation‚ procedures‚ and publications of the ICMI Study‚ The Future of the Teaching and Learning of Algebra. Key words: Study Conference‚ organisation‚ procedures‚ publications The International Commission on Mathematical Instruction (ICMI) has‚ since the 1980s‚ conducted a series of studies into topics of particular significance to the theory and practice of contemporary mathematics education. Each ICMI Study involves an international seminar‚ the “Study Conference”‚ and culminates in a published volume intended to promote and assist discussion and action at the international‚ national‚ regional‚ and institutional levels. The ICMI Study running from 2000 to 2004 was on The Future of the Teaching and Learning of Algebra‚ and its Study Conference was held at The University of Melbourne‚ Australia fromDecember to 2001. It was the first study held in the Southern Hemisphere. There are several reasons why the future of the teaching and learning of algebra was a timely focus at the beginning of the twenty first century. The strong research base developed over recent decades enabled us to take stock of what has been achieved and also to look forward to what should be done and what might be achieved in the future. In addition‚ trends evident over recent years have intensified. Those particularly affecting school mathematics are the “massification” of education—continuing in some countries whilst beginning in others—and the advance of technology.
This book provides a collection of chapters from prominent mathematics educators in which they each discuss vital issues in mathematics education and what they see as viable directions research in mathematics education could take to address these issues. All of these issues are related to learning and teaching mathematics. The book consists of nine chapters, seven from each of seven scholars who participated in an invited lecture series (Scholars in Mathematics Education) at Brigham Young University, and two chapters from two other scholars who are writing reaction papers that look across the first seven chapters. The recommendations take the form of broad, overarching principles and ideas that cut across the field. In this sense, this book differs from classical “research agenda projects,” which seek to outline specific research questions that the field should address around a central topic.
Rongjin Huang examines teachers’ knowledge of algebra for teaching, with a particular focus on teaching the concept of function and quadratic relations in China and the United States. 376 Chinese and 115 U.S.A. prospective middle and high school mathematics teachers participated in this survey. Based on an extensive quantitative and qualitative data analysis the author comes to the following conclusions: The Chinese participants demonstrate a stronger knowledge of algebra for teaching and the Chinese participants’ structure of knowledge of algebra for teaching is much more interconnected. Chinese participants show flexibility in choosing appropriate perspectives of the function concept and in selecting multiple representations. Finally, the number of college mathematics and mathematics education courses taken impacts the teachers’ knowledge of algebra for teaching.
This book considers some of the outstanding questions regarding language and communication in the teaching and learning of mathematics – an established theme in mathematics education research, which is growing in prominence. Recent research has demonstrated the wide range of theoretical and methodological resources that can contribute to this area of study, including those drawing on cross-disciplinary perspectives influenced by, among others, sociology, psychology, linguistics, and semiotics. Examining language in its broadest sense to include all modes of communication, including visual and gestural as well as spoken and written modes, it features work presented and discussed in the Language and Communication topic study group (TSG 31) at the 13th International Congress on Mathematical Education (ICME-13). A joint session with participants of the Mathematics Education in a Multilingual and Multicultural Environment topic study group (TSG 32) enhanced discussions, which are incorporated in elaborations included in this book. Discussing cross-cutting topics it appeals to readers from a wide range of disciplines, such as mathematics education and research methods in education, multilingualism, applied linguistics and beyond.
Algebra is the gateway to college and careers, yet it functions as the eye of the needle because of low pass rates for the middle school/high school course and students’ struggles to understand. We have forty years of research that discusses the ways students think and their cognitive challenges as they engage with algebra. This book is a response to the National Council of Teachers of Mathematics’ (NCTM) call to better link research and practice by capturing what we have learned about students’ algebraic thinking in a way that is usable by teachers as they prepare lessons or reflect on their experiences in the classroom. Through a Fund for the Improvement of Post-Secondary Education (FIPSE) grant, 17 teachers and mathematics educators read through the past 40 years of research on students’ algebraic thinking to capture what might be useful information for teachers to know—over 1000 articles altogether. The resulting five domains addressed in the book (Variables & Expressions, Algebraic Relations, Analysis of Change, Patterns & Functions, and Modeling & Word Problems) are closely tied to CCSS topics. Over time, veteran math teachers develop extensive knowledge of how students engage with algebraic concepts—their misconceptions, ways of thinking, and when and how they are challenged to understand—and use that knowledge to anticipate students’ struggles with particular lessons and plan accordingly. Veteran teachers learn to evaluate whether an incorrect response is a simple error or the symptom of a faulty or naïve understanding of a concept. Novice teachers, on the other hand, lack the experience to anticipate important moments in the learning of their students. They often struggle to make sense of what students say in the classroom and determine whether the response is useful or can further discussion (Leatham, Stockero, Peterson, & Van Zoest 2011; Peterson & Leatham, 2009). The purpose of this book is to accelerate early career teachers’ “experience” with how students think when doing algebra in middle or high school as well as to supplement veteran teachers’ knowledge of content and students. The research that this book is based upon can provide teachers with insight into the nature of a student’s struggles with particular algebraic ideas—to help teachers identify patterns that imply underlying thinking. Our book, How Students Think When Doing Algebra, is not intended to be a “how to” book for teachers. Instead, it is intended to orient new teachers to the ways students think and be a book that teachers at all points in their career continually pull of the shelf when they wonder, “how might my students struggle with this algebraic concept I am about to teach?” The primary audience for this book is early career mathematics teachers who don’t have extensive experience working with students engaged in mathematics. However, the book can also be useful to veteran teachers to supplement their knowledge and is an ideal resource for mathematics educators who are preparing preservice teachers.