Download Free Integrating Relational Databases With The Semantic Web Book in PDF and EPUB Free Download. You can read online Integrating Relational Databases With The Semantic Web and write the review.

An early vision in Computer Science was to create intelligent systems capable of reasoning on larg¬e amounts of data. Independent results in the areas of Semantic Web and Relational Databases have advanced us towards this vision. Despite independent advances, the interface between Relational Databases and Semantic Web is poorly understood. This dissertation revisits this early vision with respect to current technology and addresses the following question: How and to what extent can Relational Databases be integrated with the Semantic Web? The thesis is that much of the existing Relational Database infrastructure can be reused to support the Semantic Web. Two problems are studied. Can a Relational Database be automatically virtualized as a Semantic Web data source? The first contribution is an automatic direct mapping from a Relational Database schema and data to RDF and OWL. The second contribution is a method capable of evaluating SPARQL queries against the Relational Database by exploiting two existing relational query optimizations. These contributions are embodied in the Ultrawrap system. Experiments show that SPARQL query execution performance on Ultrawrap is comparable to that of SQL queries written directly for the relational data. Such results have not been previously achieved. Can a Relational Database be mapped to existing Semantic Web ontologies and act as a reasoner? A third contribution is a method for Relational Databases to support inheritance and transitivity by compiling the ontology as mappings, implementing the mappings as views, using SQL recursion and optimizing by materializing views. Ultrawrap is extended with this contribution. Empirical analysis reveals that Relational Databases are able to effectively act as reasoners.
An early vision in Computer Science was to create intelligent systems capable of reasoning on large amounts of data. Independent results in the areas of Semantic Web and Relational Databases have advanced us towards this vision. Despite independent advances, the interface between Relational Databases and Semantic Web is poorly understood. This dissertation revisits this early vision with respect to current technology and addresses the following question: How and to what extent can Relational Databases be integrated with the Semantic Web? The thesis is that much of the existing Relational Database infrastructure can be reused to support the Semantic Web. Two problems are studied.Can a Relational Database be automatically virtualized as a Semantic Web data source? The first contribution is an automatic direct mapping from a Relational Database schema and data to RDF and OWL. The second contribution is a method capable of evaluating SPARQL queries against the Relational Database by exploiting two existing relational query optimizations. These contributions are embodied in the Ultrawrap system. Experiments show that SPARQL query execution performance on Ultrawrap is comparable to that of SQL queries written directly for the relational data. Such results have not been previously achieved.Can a Relational Database be mapped to existing Semantic Web ontologies and act as a reasoner? A third contribution is a method for Relational Databases to support inheritance and transitivity by compiling the ontology as mappings, implementing the mappings as views, using SQL recursion and optimizing by materializing views. Ultrawrap is extended with this contribution. Empirical analysis reveals that Relational Databases are able to effectively act as reasoners.
With this book, the promise of the Semantic Web -- in which machines can find, share, and combine data on the Web -- is not just a technical possibility, but a practical reality Programming the Semantic Web demonstrates several ways to implement semantic web applications, using current and emerging standards and technologies. You'll learn how to incorporate existing data sources into semantically aware applications and publish rich semantic data. Each chapter walks you through a single piece of semantic technology and explains how you can use it to solve real problems. Whether you're writing a simple mashup or maintaining a high-performance enterprise solution,Programming the Semantic Web provides a standard, flexible approach for integrating and future-proofing systems and data. This book will help you: Learn how the Semantic Web allows new and unexpected uses of data to emerge Understand how semantic technologies promote data portability with a simple, abstract model for knowledge representation Become familiar with semantic standards, such as the Resource Description Framework (RDF) and the Web Ontology Language (OWL) Make use of semantic programming techniques to both enrich and simplify current web applications
This book constitutes the refereed proceedings of the joint 6th International Semantic Web Conference, ISWC 2007, and the 2nd Asian Semantic Web Conference, ASWC 2007, held in Busan, Korea, in November 2007. The 50 revised full academic papers and 12 revised application papers presented together with 5 Semantic Web Challenge papers and 12 selected doctoral consortium articles were carefully reviewed and selected from a total of 257 submitted papers to the academic track and 29 to the applications track. The papers address all current issues in the field of the semantic Web, ranging from theoretical and foundational aspects to various applied topics such as management of semantic Web data, ontologies, semantic Web architecture, social semantic Web, as well as applications of the semantic Web. Short descriptions of the top five winning applications submitted to the Semantic Web Challenge competition conclude the volume.
This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.
This is an edited volume based on the 2007 Conference on Metadata and Semantics Research (MTSR), now in its second meeting. Metadata research is a pluri-disciplinary field that encompasses all aspects of the definition, creation, assessment, management and use of metadata. The volume brings together world class leaders to contribute their research and up-to-date information on metadata and semantics applied to library management, e-commerce, e-business, information science and librarianship, to name a few. The book is designed for a professional audience composed of researchers and practitioners in industry.
The next major advance in the Web-Web 3.0-will be built on semantic Web technologies, which will allow data to be shared and reused across application, enterprise, and community boundaries. Written by a team of highly experienced Web developers, this book explains examines how this powerful new technology can unify and fully leverage the ever-growing data, information, and services that are available on the Internet. Helpful examples demonstrate how to use the semantic Web to solve practical, real-world problems while you take a look at the set of design principles, collaborative working groups, and technologies that form the semantic Web. The companion Web site features full code, as well as a reference section, a FAQ section, a discussion forum, and a semantic blog.
This volume contains the lecture notes of the 13th Reasoning Web Summer School, RW 2017, held in London, UK, in July 2017. In 2017, the theme of the school was "Semantic Interoperability on the Web", which encompasses subjects such as data integration, open data management, reasoning over linked data, database to ontology mapping, query answering over ontologies, hybrid reasoning with rules and ontologies, and ontology-based dynamic systems. The papers of this volume focus on these topics and also address foundational reasoning techniques used in answer set programming and ontologies.
This book sheds light on the principles behind the relational model, which is fundamental to all database-backed applications--and, consequently, most of the work that goes on in the computing world today. Database in Depth: The Relational Model for Practitioners goes beyond the hype and gets to the heart of how relational databases actually work.Ideal for experienced database developers and designers, this concise guide gives you a clear view of the technology--a view that's not influenced by any vendor or product. Featuring an extensive set of exercises, it will help you: understand why and how the relational model is still directly relevant to modern database technology (and will remain so for the foreseeable future) see why and how the SQL standard is seriously deficient use the best current theoretical knowledge in the design of their databases and database applications make informed decisions in their daily database professional activities Database in Depth will appeal not only to database developers and designers, but also to a diverse field of professionals and academics, including database administrators (DBAs), information modelers, database consultants, and more. Virtually everyone who deals with relational databases should have at least a passing understanding of the fundamentals of working with relational models.Author C.J. Date has been involved with the relational model from its earliest days. An exceptionally clear-thinking writer, Date lays out principle and theory in a manner that is easily understood. Few others can speak as authoritatively the topic of relational databases as Date can.