Download Free Integrating Artificial Intelligence With Devops Book in PDF and EPUB Free Download. You can read online Integrating Artificial Intelligence With Devops and write the review.

Unlock the future of software development with Integrating Artificial Intelligence with DevOps: Advanced Techniques, Predictive Analytics, and Automation for Real-Time Optimization and Security in Modern Software Development. This comprehensive monograph is a must-read for professionals seeking to revolutionize their DevOps workflows through the power of AI. Dive deep into the intricate integration of Artificial Intelligence within DevOps practices and discover advanced methodologies that enhance every stage of the software development lifecycle. From predictive analytics and intelligent automation to real-time optimization and robust security measures, this book offers a wealth of knowledge for optimizing software delivery. Explore practical applications, in-depth case studies, and best practices that illustrate the transformative potential of AI in DevOps. Each chapter builds on the previous, providing a seamless and cohesive narrative that guides readers through foundational concepts to advanced implementations. Whether you're looking to improve CI/CD pipelines, automate testing and monitoring, manage infrastructure more efficiently, or enhance security with AI-driven techniques, this book equips you with the tools and insights needed to ensure high-quality, secure, and efficient software delivery. Join the vanguard of modern software development with Integrating Artificial Intelligence with DevOps, and harness AI to achieve real-time optimization and unparalleled security in your DevOps processes.
The book "Accelerating Software Quality: Machine Learning and Artificial Intelligence in the Age of DevOps" is a complete asset for software developers, testers, and managers that are on their journey to a more mature DevOps workflow, and struggle with better automation and data-driven decision making. DevOps is a mature process across the entire market, however, with existing Non-AI/ML technologies and models, it comes short in expediting release cycle, identifying productivity gaps and addressing them. This book, that was implemented by myself with the help of leaders from the DevOps and test automation space, is covering topics from basic introduction to AI and ML in software development and testing, implications of AI and ML on existing apps, processes, and tools, practical tips in applying commercial and open-source AI/ML tools within existing tool chain, chat-bots testing, visual based testing using AI, automated security scanning for vulnerabilities, automated code reviews, API testing and management using AI/ML, reducing effort and time through test impact analysis (TIA), robotic process automation (RPA), AIOps for smarter code deployments and production defects prevention, and many more.When properly leveraging such tools, DevOps teams can benefit from greater code quality and functional and non-functional test automation coverage. This increases their release cycle velocity, reduces noise and software waste, and enhances their app quality.The book is divided into 3 main sections: *Section 1 covers the fundamentals of AI and ML in software development and testing. It includes introductions, definitions, 101 for testing AI-Based applications, classifications of AI/ML and defects that are tied to AI/ML, and more.*Section 2 focuses on practical advises and recommendations for using AI/ML based solutions within software development activities. This section includes topics like visual AI test automation, AI in test management, testing conversational AI applications, RPA benefits, API testing and much more.*Section 3 covers the more advanced and future-looking angles of AI and ML with projections and unique use cases. Among the topics in this section are AI and ML in logs observability, AIOps benefits to an entire DevOps teams, how to maintain AI/ML test automation, Test impact analysis with AI, and more.The book is packed with many proven best practices, real life examples, and many other open source and commercial solution recommendations that are set to shape the future of DevOps together with ML/AI
Artificial intelligence (AI) is becoming a reality for pioneering organizations while they are facing complex and multifaceted aspects of business sustainability with ambiguous and changing ethical norms and vague or nonexistent legislation. The first quarter of the 21st century was identified as the beginning of the continuous, ongoing, and accelerating wave of simultaneous general purpose technologies revolutions causing accelerated shrinkage of the half-life of knowledge. Cases on Enhancing Business Sustainability Through Knowledge Management Systems presents teaching case studies exploring the formulation and implementation of knowledge management systems (KMS) in organizations. Covering topics such as automation, machine learning, and socio-ecological innovation, this case book is an essential resource for business leaders and managers, IT managers, entrepreneurs, government officials, computer scientists, students and educators of higher education, librarians, researchers, and academicians.
This bestselling book gives business leaders and executives a foundational education on how to leverage artificial intelligence and machine learning solutions to deliver ROI for your business.
From fundamental to advanced strategies, unlock useful insights for creating innovative, user-centric websites while navigating the evolving landscape of AI ethics and security Key Features Explore AI's role in web development, from shaping projects to architecting solutions Master advanced AI strategies to build cutting-edge applications Anticipate future trends by exploring next-gen development environments, emerging interfaces, and security considerations in AI web development Purchase of the print or Kindle book includes a free PDF eBook Book Description If you're a web developer looking to leverage the power of AI in your projects, then this book is for you. Written by an AI and ML expert with more than 15 years of experience, AI Strategies for Web Development takes you on a transformative journey through the dynamic intersection of AI and web development, offering a hands-on learning experience.The first part of the book focuses on uncovering the profound impact of AI on web projects, exploring fundamental concepts, and navigating popular frameworks and tools. As you progress, you'll learn how to build smart AI applications with design intelligence, personalized user journeys, and coding assistants. Later, you'll explore how to future-proof your web development projects using advanced AI strategies and understand AI's impact on jobs. Toward the end, you'll immerse yourself in AI-augmented development, crafting intelligent web applications and navigating the ethical landscape.Packed with insights into next-gen development environments, AI-augmented practices, emerging realities, interfaces, and security governance, this web development book acts as your roadmap to staying ahead in the AI and web development domain. What you will learn Build AI-powered web projects with optimized models Personalize UX dynamically with AI, NLP, chatbots, and recommendations Explore AI coding assistants and other tools for advanced web development Craft data-driven, personalized experiences using pattern recognition Architect effective AI solutions while exploring the future of web development Build secure and ethical AI applications following TRiSM best practices Explore cutting-edge AI and web development trends Who this book is for This book is for web developers with experience in programming languages and an interest in keeping up with the latest trends in AI-powered web development. Full-stack, front-end, and back-end developers, UI/UX designers, software engineers, and web development enthusiasts will also find valuable information and practical guidelines for developing smarter websites with AI. To get the most out of this book, it is recommended that you have basic knowledge of programming languages such as HTML, CSS, and JavaScript, as well as a familiarity with machine learning concepts.
Smart manufacturing environments are revolutionizing the industrial sector by integrating advanced technologies, such as the Internet of Things (IoT), artificial intelligence (AI), and robotics, to achieve higher levels of efficiency, productivity, and safety. However, the increasing complexity and interconnectedness of these systems also introduce new security challenges that must be addressed to ensure the safety of human workers and the integrity of manufacturing processes. Key topics include risk assessment methodologies, secure communication protocols, and the development of standard specifications to guide the design and implementation of HCPS. Recent research highlights the importance of adopting a multi-layered approach to security, encompassing physical, network, and application layers. Furthermore, the integration of AI and machine learning techniques enables real-time monitoring and analysis of system vulnerabilities, as well as the development of adaptive security measures. Artificial Intelligence Solutions for Cyber-Physical Systems discusses such best practices and frameworks as NIST Cybersecurity Framework, ISO/IEC 27001, and IEC 62443 of advanced technologies. It presents strategies and methods to mitigate risks and enhance security, including cybersecurity frameworks, secure communication protocols, and access control measures. The book also focuses on the design, implementation, and management of secure HCPS in smart manufacturing environments. It covers a wide range of topics, including risk assessment, security architecture, data privacy, and standard specifications, for HCPS. The book highlights the importance of securing communication protocols, the role of artificial intelligence and machine learning in threat detection and mitigation, and the need for robust cybersecurity frameworks in the context of smart manufacturing.
This book constitutes the refereed proceedings of the 22nd IFIP WG 6.11 Conference on e-Business, e-Services and e-Society, I3E 2023, held in Curitiba, Brazil, during November 9–11, 2023. The 29 full papers and 2 short papers presented in this volume were carefully reviewed and selected from 68 submissions. The contributions were organized in topical sections as follows: Artificial Intelligence and Algorithm; Digital Transformation and New Technologies; and Sustainable Technologies and Smart Cities.
​This book constitutes revised selected papers from the refereed proceedings of the 20th International Conference of the Italian Association for Artificial Intelligence, AIxIA 2021, which was held virtually in December 2021. The 36 full papers included in this book were carefully reviewed and selected from 58 submissions; the volume also contains 12 extended and revised workshop contributions. The papers were organized in topical sections as follows: Planning and strategies; constraints, argumentation, and logic programming; knowledge representation, reasoning, and learning; natural language processing; AI for content and social media analysis; signal processing: images, videos and speech; machine learning for argumentation, explanation, and exploration; machine learning and applications; and AI applications.
To provide the necessary security and quality assurance activities into Internet of Things (IoT)-based software development, innovative engineering practices are vital. They must be given an even higher level of importance than most other events in the field. Integrating the Internet of Things Into Software Engineering Practices provides research on the integration of IoT into the software development life cycle (SDLC) in terms of requirements management, analysis, design, coding, and testing, and provides security and quality assurance activities to IoT-based software development. The content within this publication covers agile software, language specification, and collaborative software and is designed for analysts, security experts, IoT software programmers, computer and software engineers, students, professionals, and researchers.