Download Free Integrated Weighted Distance Measure For Single Valued Neutrosophic Linguistic Sets And Its Application In Supplier Selection Book in PDF and EPUB Free Download. You can read online Integrated Weighted Distance Measure For Single Valued Neutrosophic Linguistic Sets And Its Application In Supplier Selection and write the review.

A single-valued neutrosophic linguistic set (SVNLS) is a popular fuzzy tool for describing deviation information in uncertain complex situations. The aim of this paper is to study some logarithmic distance measures and study their usefulness in multiple attribute group decision making (MAGDM) problems within single-valued neutrosophic linguistic (SVNL) environments.
The aim of this paper is to present a multiple-attribute group decision-making (MAGDM) framework based on a new single-valued neutrosophic linguistic (SVNL) distance measure. By unifying the idea of the weighted average and ordered weighted averaging into a single-valued neutrosophic linguistic distance, we first developed a new SVNL weighted distance measure, namely a SVNL combined and weighted distance (SVNLCWD) measure. The focal characteristics of the devised SVNLCWD are its ability to combine both the decision-makers’ attitudes toward the importance, as well as the weights, of the arguments. Various desirable properties and families of the developed SVNLCWD were contemplated. Moreover, aMAGDMapproach based on the SVNLCWD was formulated. Lastly, a real numerical example concerning a low-carbon supplier selection problem was used to describe the superiority and feasibility of the developed approach.
This paper presents a technique based on the ordered weighted averaging (OWA) distance for the single-valued neutrosophic linguistic (SVNL) technique for order preference by similarity to an ideal solution (TOPSIS). First, the inadequacies of the existing SVNL TOPSIS are analyzed in detail.
The decision-making trial and evaluation laboratory (DEMATEL) has been used to solve numerous multicriteria decision-making (MCDM) problems, where real numbers are utilised in defining linguistic variables. Although the DEMATEL has shown its success in solving many decision-making problems, researchers have not fully understood how the DEMATEL works on nonreal-number linguistic variables.
This book contains 37 papers by 73 renowned experts from 13 countries around the world, on following topics: neutrosophic set; neutrosophic rings; neutrosophic quadruple rings; idempotents; neutrosophic extended triplet group; hypergroup; semihypergroup; neutrosophic extended triplet group; neutrosophic extended triplet semihypergroup and hypergroup; neutrosophic offset; uninorm; neutrosophic offuninorm and offnorm; neutrosophic offconorm; implicator; prospector; n-person cooperative game; ordinary single-valued neutrosophic (co)topology; ordinary single-valued neutrosophic subspace; α-level; ordinary single-valued neutrosophic neighborhood system; ordinary single-valued neutrosophic base and subbase; fuzzy numbers; neutrosophic numbers; neutrosophic symmetric scenarios; performance indicators; financial assets; neutrosophic extended triplet group; neutrosophic quadruple numbers; refined neutrosophic numbers; refined neutrosophic quadruple numbers; multigranulation neutrosophic rough set; nondual; two universes; multiattribute group decision making; nonstandard analysis; extended nonstandard analysis; monad; binad; left monad closed to the right; right monad closed to the left; pierced binad; unpierced binad; nonstandard neutrosophic mobinad set; neutrosophic topology; nonstandard neutrosophic topology; visual tracking; neutrosophic weight; objectness; weighted multiple instance learning; neutrosophic triangular norms; residuated lattices; representable neutrosophic t-norms; De Morgan neutrosophic triples; neutrosophic residual implications; infinitely ∨-distributive; probabilistic neutrosophic hesitant fuzzy set; decision-making; Choquet integral; e-marketing; Internet of Things; neutrosophic set; multicriteria decision making techniques; uncertainty modeling; neutrosophic goal programming approach; shale gas water management system.
In this paper, we extend the Bonferroni mean (BM) operator, generalized Bonferroni mean (GBM) operator, dual generalized Bonferroni mean (DGBM) operator and dual generalized geometric Bonferroni mean (DGGBM) operator with 2-tuple linguistic neutrosophic numbers (2TLNNs) to propose 2-tuple linguistic neutrosophic numbers weighted Bonferroni mean (2TLNNWBM) operator, 2-tuple linguistic neutrosophic numbers weighted geometric Bonferroni mean (2TLNNWGBM) operator, generalized 2-tuple linguistic neutrosophic numbers weighted Bonferroni mean (G2TLNNWBM) operator, generalized 2-tuple linguistic neutrosophic numbers weighted geometric Bonferroni mean (G2TLNNWGBM) operator, dual generalized 2-tuple linguistic neutrosophic numbers weighted Bonferroni mean (DG2TLNNWBM) operator, and dual generalized 2-tuple linguistic neutrosophic numbers weighted geometric Bonferroni mean (DG2TLNNWGBM) operator.
In this paper, the hesitant neutrosophic linguistic set is first defined by extending a hesitant fuzzy set to accommodate linguistic terms and neutrosophic fuzzy values. Some operational laws are defined for hesitant neutrosophic linguistic fuzzy information.
The recent boom of various integrated decision-making methods has attracted many researchers to the field. The recent integrated Analytic Network Process and Decision Making Trial and Evaluation Laboratory (ANP–DEMATEL) methods were developed based on crisp numbers and fuzzy numbers. However, these numbers are incapable of dealing with the indeterminant and inconsistent information that exists in real-life problems. This paper proposes improvements to the integrated ANP–DEMATEL method by bringing together the neutrosophic numbers, the ANP method, and the DEMATEL method, which are later abbreviated to NS-DANP.
This paper presents a new correlation coefficient measure, which satisfies the requirement of this measure equaling one if and only if two interval neutrosophic sets (INSs) are the same.
Earthquakes are the leading natural disasters that seriously affect human life. Furthermore, earthquakes are natural disasters that have the ability to trigger a second disaster in addition to the damages they cause. From this point of view, post-earthquake fires are defined as the one of the most dangerous secondary disasters after an earthquake and often cause even more serious dangers. For this reason, government officials and relevant decision-makers should effectively determine post-earthquake fire risks and take necessary precautions. In this study, we consider the problem of determining the fire risk after an earthquake as a multi-criteria decision problem and present a two-level framework for risk assessment. The main and sub-criteria are determined by a detailed literature review and Modified Delphi method is employed to gain and consolidate expert opinions.