Download Free Integrated Product Development With Fiber Reinforced Polymers Book in PDF and EPUB Free Download. You can read online Integrated Product Development With Fiber Reinforced Polymers and write the review.

This book presents the basics of fiber reinforced polymers (FRP). The author presents the material-specific advantages of FRP and the typical areas of their application. The problems created by conventional, non-integrating product development are listed and the author states how these problems are potentially overcome by integrated product development (IPD). In addition, it is explained why IPD is of particular importance for FRP. An approach to IPD for FRP-parts is presented. It is explained step by step how a catalogue of requirements is defined as well as how this basis is used to develop a concept, a design, and a final construction. Simple but effective methods for the selection of fiber materials, semi-finished products and manufacturing processes are highlighted in this book. A concluding chapter describes an approach to techno-economic evaluation. Throughout the book, practical application examples show the reader how to put the gained knowledge into practice.
Discontinuous long fiber reinforced polymer structures with local continuous fiber reinforcements represent an important class of lightweight materials with broad design possibilities and diverse technical applications, e.g. in vehicle construction. However, in contrast to continuous fiber reinforced composites, extensively used in the aircraft industry, there is still a lack of integrated and experimentally proven concepts for manufacture, modeling, and dimensioning of combinations of discontinuously and continuously reinforced polymer structures. This is partly ascribed to the complexity of the manufacturing processes of discontinuously reinforced polymers, with heterogeneous, anisotropic, and nonlinear material and structural properties, but also to the resulting bonding problem of both material types. This book addresses these issues, including both continuous and discontinuous fiber processing strategies. Specific design strategies for advanced composite reinforcement strategies are provided, with an integrated and holistic approach taken for composites material selection, product design, and mechanical properties. Characterization, simulation, technology, design, future research, and implementation directions are also included. Especially in the field of application of three-dimensional load-bearing structures, this book provides an excellent foundation for the enhancement of scientific methods and the education of engineers who need an interdisciplinary understanding of process and material techniques, as well as simulation and product development methods.
The second edition of a bestseller, this book discusses an integrated product and process design that has been successfully used to conceptualize, design, and rapidly product competitively-priced quality products. It examines the overlapping, interacting, and iterative nature of the engineering aspects that impact the product realization process. A detailed introduction to the creation of high quality products, the new edition explores the role of innovation, requirements engineering, smart materials, different rapid prototyping methods, and life-cycle cost determination, to name just a few. The book delineates proven methods that have been used successfully to create products.
This book reports on cutting-edge research and developments focusing on integrating intelligent functionalities into materials, components, systems and products. Gathering the proceedings of the 6th International Conference on System-Integrated Intelligence (SysInt 2022), held on September 7-9, in Genova, Italy, it offers a comprehensive, multidisciplinary and applied perspective on the state-of-the art and challenges in the field of intelligent, flexible and connected systems. The book covers advanced methods and applications relating to artificial, pervasive and ubiquitous intelligence, sensors, smart factory and logistics, structural health monitoring, as well as soft robotics, cognitive systems and human-machine interaction. Giving a special focus to artificial intelligence, it extensively reports on methods and algorithms for data-driven modeling, and agent-based data processing and planning. It aims at inspiring and fostering collaboration between researchers and professionals from the different fields of electrical, manufacturing and production engineering, and materials and computer sciences.
Advanced Fibre-reinforced Polymer (FRP) Composites for Structural Applications, Second Edition provides updates on new research that has been carried out on the use of FRP composites for structural applications. These include the further development of advanced FRP composites materials that achieve lighter and stronger FRP composites, how to enhance FRP integrated behavior through matrix modification, along with information on pretension treatments and intelligence technology. The development of new technology such as automated manufacturing and processing of fiber-reinforced polymer (FRP) composites have played a significant role in optimizing fabrication processing and matrix formation. In this new edition, all chapters have been brought fully up-to-date to take on the key aspects mentioned above. The book's chapters cover all areas relevant to advanced FRP composites, from the material itself, its manufacturing, properties, testing and applications in structural and civil engineering. Applications span from civil engineering, to buildings and the energy industry. - Covers all areas relevant to advanced FRP composites, from the material itself, its manufacturing, properties, testing and applications in structural engineering - Features new manufacturing techniques, such as automated fiber placement and 3D printing of composites - Includes various applications, such as prestressed-FRP, FRP made of short fibers, continuous structural health monitoring using advanced optical fiber Bragg grating (FBG), durability of FRP-strengthened structures, and the application of carbon nano-tubes or platelets for enhancing durability of FRP-bonded structures
Featuring contributions from experts at some of the world's leading academic and industrial institutions, Advanced Polymeric Materials: Structure Property Relationships brings into book form a wealth of information previously available primarily only within computer programs. In a welcome narrative treatment, it provides comprehensive coverage of p
This book provides the latest developments on safety practices utilized in composite manufacturing facilities for students, workers, engineers, and other participants. It includes commentary from academic experts in the field who present cutting-edge research on advanced composite materials. Illustrations, figures, and tables are included in this book in order to make it easier for students, workers, engineers, and other participants to understand the contents of this book. The end user knows the safety and health that should be practiced in composite industry and their right in composite industry. Besides that, the composites industry players can upgrade their current safety system to the recommended practiced system. A lot of problems are solved by integrate the current system and advanced technology system from extensive research.
Mineral-filled polymer composites are increasingly used for various applications, including automotive, construction, biomedical, maritime, sport and ballistic, due to the advantages of low cost, light weight, excellent rigidity and high mechanical strength. One of two volumes comprising the Mineral-Filled Polymer Composites Handbook, this volume provides an overview of the latest research, trends, applications and future directions of advanced mineral fiber-reinforced polymer composites. It focuses specifically on material selection, processing and applications. This book: Emphasizes the principles governing the behavior of mineral-filled composite materials in the field of engineering and their applications Covers systematic material selection tools such as analytical hierarchy process (AHP), analytical network process (ANP), and technique of ranking preferences by similarity of the ideal solution (TOPSIS) Reviews the use of these materials for various engineering applications Features chapters looking at fabrication techniques and frictional properties Details current research in polymer nanocomposites and particulate polymer composites This book serves as an excellent reference guide for researchers, advanced students, academics and industry professionals interested in the synthesis of mineral-filled polymer and biopolymer composites, as well as those pursuing research in the broad fields of composite materials, polymers, organic/inorganic hybrid materials and nano-assembly.
This book provides an accurate overview of the recent research or industrial application in interactive design. The different arguments, taken from the international conference Virtual Concept 2005, will provide the reader with some advanced solutions concerning new methods and tools by discussing modelling techniques, design solution space exploration and interactive process organization.
This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry. The Handbook of Composites from Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The Handbook comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. Volume 6 is solely focused on the "Polymeric Composites". Some of the important topics include but not limited to: Keratin as renewable material for developing polymer composites; natural and synthetic matrices; hydrogels in tissue engineering; smart hydrogels: application in bioethanol production; principle renewable biopolymers; application of hydrogel biocomposites for multiple drug delivery; nontoxic holographic materials; bioplasticizer-epoxidized vegetable oils-based poly (lactic acid) blends and nanocomposites; preparation, characterization and adsorption properties of poly (DMAEA) – cross-linked starch gel copolymer in wastewater treatments; study of chitosan cross-linking hydrogels for absorption of antifungal drugs using molecular modelling; pharmaceutical delivery systems composed of chitosan; eco-friendly polymers for food packaging; influence of surface modification on the thermal stability and percentage of crystallinity of natural abaca fiber; influence of the use of natural fibers in composite materials assessed on a life cycle perspective; plant polysaccharides-blended ionotropically-gelled alginate multiple-unit systems for sustained drug release; vegetable oil based polymer composites; applications of chitosan derivatives in wastewater treatment; novel lignin-based materials as a products for various applications; biopolymers from renewable resources and thermoplastic starch matrix as polymer units of multi-component polymer systems for advanced applications; chitosan composites: preparation and applications in removing water pollutants and recent advancements in biopolymer composites for addressing environmental issues.