Download Free Integrated Power Management Book in PDF and EPUB Free Download. You can read online Integrated Power Management and write the review.

This book begins with the premise that energy demands are directing scientists towards ever-greener methods of power management, so highly integrated power control ICs (integrated chip/circuit) are increasingly in demand for further reducing power consumption. A timely and comprehensive reference guide for IC designers dealing with the increasingly widespread demand for integrated low power management Includes new topics such as LED lighting, fast transient response, DVS-tracking and design with advanced technology nodes Leading author (Chen) is an active and renowned contributor to the power management IC design field, and has extensive industry experience Accompanying website includes presentation files with book illustrations, lecture notes, simulation circuits, solution manuals, instructors’ manuals, and program downloads
In Thermal and Power Management of Integrated Circuits, power and thermal management issues in integrated circuits during normal operating conditions and stress operating conditions are addressed. Thermal management in VLSI circuits is becoming an integral part of the design, test, and manufacturing. Proper thermal management is the key to achieve high performance, quality and reliability. Performance and reliability of integrated circuits are strong functions of the junction temperature. A small increase in junction temperature may result in significant reduction in the device lifetime. This book reviews the significance of the junction temperature as a reliability measure under nominal and burn-in conditions. The latest research in the area of electro-thermal modeling of integrated circuits will also be presented. Recent models and associated CAD tools are covered and various techniques at the circuit and system levels are reviewed. Subsequently, the authors provide an insight into the concept of thermal runaway and how it may best be avoided. A section on low temperature operation of integrated circuits concludes the book.
Power Management Integrated Circuits and Technologies delivers a modern treatise on mixed-signal integrated circuit design for power management. Comprised of chapters authored by leading researchers from industry and academia, this definitive text: Describes circuit- and architectural-level innovations that meet advanced power and speed capabilities Explores hybrid inductive-capacitive converters for wide-range dynamic voltage scaling Presents innovative control techniques for single inductor dual output (SIDO) and single inductor multiple output (SIMO) converters Discusses cutting-edge design techniques including switching converters for analog/RF loads Compares the use of GaAs pHEMTs to CMOS devices for efficient high-frequency switching converters Thus, Power Management Integrated Circuits and Technologies provides comprehensive, state-of-the-art coverage of this exciting and emerging field of engineering.
Because of the demand for higher efficiencies, smaller output ripple, and smaller converter size for modern power electronic systems, integrated power electronic converters could soon replace conventional switched-mode power supplies. Synthesized integrated converters and related digital control techniques address problems related to cost, space, flexibility, energy efficiency, and voltage regulation—the key factors in digital power management and implementation. Meeting the needs of professionals working in power electronics, as well as advanced engineering students, Integrated Power Electronic Converters and Digital Control explores the many benefits associated with integrated converters. This informative text details boost type, buck type, and buck-boost type integrated topologies, as well as other integrated structures. It discusses concepts behind their operation as well specific applications. Topics discussed include: Isolated DC-DC converters such as flyback, forward, push-pull, full-bridge, and half-bridge Power factor correction and its application Definition of the integrated switched-mode power supplies Steady-state analysis of the boost integrated flyback rectifier energy storage converter Dynamic analysis of the buck integrated forward converter Digital control based on the use of digital signal processors (DSPs) With innovations in digital control becoming ever more pervasive, system designers continue to introduce products that integrate digital power management and control integrated circuit solutions, both hybrid and pure digital. This detailed assessment of the latest advances in the field will help anyone working in power electronics and related industries stay ahead of the curve.
From power electronics to power integrated circuits (PICs), smart power technologies, devices, and beyond, Integrated Power Devices and TCAD Simulation provides a complete picture of the power management and semiconductor industry. An essential reference for power device engineering students and professionals, the book not only describes the physics inside integrated power semiconductor devices such lateral double-diffused metal oxide semiconductor field-effect transistors (LDMOSFETs), lateral insulated-gate bipolar transistors (LIGBTs), and super junction LDMOSFETs but also delivers a simple introduction to power management systems. Instead of abstract theoretical treatments and daunting equations, the text uses technology computer-aided design (TCAD) simulation examples to explain the design of integrated power semiconductor devices. It also explores next generation power devices such as gallium nitride power high electron mobility transistors (GaN power HEMTs). Including a virtual process flow for smart PIC technology as well as a hard-to-find technology development organization chart, Integrated Power Devices and TCAD Simulation gives students and junior engineers a head start in the field of power semiconductor devices while helping to fill the gap between power device engineering and power management systems.
Dynamic power management is a design methodology aiming at controlling performance and power levels of digital circuits and systems, with the goal of extending the autonomous operation time of battery-powered systems, providing graceful performance degradation when supply energy is limited, and adapting power dissipation to satisfy environmental constraints. Dynamic Power Management: Design Techniques and CAD Tools addresses design techniques and computer-aided design solutions for power management. Different approaches are presented and organized in an order related to their applicability to control-units, macro-blocks, digital circuits and electronic systems, respectively. All approaches are based on the principle of exploiting idleness of circuits, systems, or portions thereof. They involve both the detection of idleness conditions and the freezing of power-consuming activities in the idle components. The book also describes some approaches to system-level power management, including Microsoft's OnNow architecture and the `Advanced Configuration and Power Management' standard proposed by Intel, Microsoft and Toshiba. These approaches migrate power management to the software layer running on hardware platforms, thus providing a flexible and self-configurable solution to adapting the power/performance tradeoff to the needs of mobile (and fixed) computing and communication. Dynamic Power Management: Design Techniques and CAD Tools is of interest to researchers and developers of computer-aided design tools for integrated circuits and systems, as well as to system designers.
A timely one-stop pioneering book presenting all four major power management integrated circuits Existing analog IC books usually focus on amplifier and comparator designs, with some extend to switched capacitor filter designs and analog-to-digital and digital-to-analog converters design. There is no book yet on power management integrated circuits. Ki’s book fills the void. This self-contained book discusses all fundamental concepts in switching converters, low dropout regulators, charge pumps and voltage references systematically, and in the context of analog integrated circuit design. Furthermore, concepts are discussed in both qualitative and quantitative aspects. Qualitative understanding is important in getting the essential operation of a circuit, but quantitative analysis supplies the solid foundation on which qualitative discussion is based. First book covering all four major power management circuits All concepts discussed in both qualitative and quantitative aspects Written as a self-contained text – well-organized and systematic Authored by a pioneering scientist in the field Supplementary instructional materials available for lecturers MATLAB simulation code for readers to download and practice on their own
This comprehensive book focuses on DC-DC switching power supply circuits, which are receiving attention as a key technology in green IT, especially in the automotive and consumer electronics industries. It covers buck converters, isolated converters, PFC converters, their modeling and analysis, several control methods, passive components, and their
This book provides an in-depth overview of design and implementation of leakage reduction techniques. The focus is on applicability, technology dependencies, and scalability. The book mainly deals with circuit design but also addresses the interface between circuit and system level design on the one side and between circuit and physical design on the other side.
Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: - Manufacturing techniques for 3-D ICs with TSVs - Electrical modeling and closed-form expressions of through silicon vias - Substrate noise coupling in heterogeneous 3-D ICs - Design of 3-D ICs with inductive links - Synchronization in 3-D ICs - Variation effects on 3-D ICs - Correlation of WID variations for intra-tier buffers and wires - Offers practical guidance on designing 3-D heterogeneous systems - Provides power delivery of 3-D ICs - Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more - Provides experimental case studies in power delivery, synchronization, and thermal characterization