Download Free Integrated Pest Management Of Flea Beetles In Canola Book in PDF and EPUB Free Download. You can read online Integrated Pest Management Of Flea Beetles In Canola and write the review.

Canola and other oilseed Brassica species are important oilseed crops in the northern Great Plains of the U.S. and Canada. As a cool season crop, canola adds diversity to cropping rotation systems. The crucifer flea beetle, Phyllotreta cruciferae Goeze, and the striped flea beetle, Phyllotreta striolata, are the most serious insect pests of canola. Crucifer flea beetle is the dominant flea beetle pest of canola. Adult flea beetles emerge in the spring and feed on the cotyledons and true leaves. When they emerge in large numbers, they can devastate a seedling canola field quickly; therefore, timely monitoring and management of this pest is important. Control costs for flea beetles in oilseed Brassica crops often exceed $300 million annually in North America.
This book comprehensively reviews current pest management practices and explores novel integrated pest management strategies in Brassica oilseed crops. It is essential reading for pest management practitioners and researchers working on pest management in canola and other Brassica crops worldwide. Canola, mustard, camelina and crambe are the most important oilseed crops in the world. Canola is the second largest oilseed crop in the world providing 13% of the world's supply. Seeds of these species commonly contain 40% or more oil and produce meals with 35 to 40% protein. However, its production has declined significantly in recent years due to insect pest problems. The canola pest complexes are responsible for high insecticide applications on canola. Many growers rely on calendar-based spraying schedules for insecticide applications. The diamondback moth Plutella xylostella and flea beetles Phyllotreta spp. (P. cruciferae and P. striolata)cause serious damage to canola. In the Northern Great Plains, USA, for instance, P. xylostella is now recorded everywhere that canola is grown. Severe damage to canola plants can be caused by overwintering populations of flea beetles feeding on newly emerged seedlings. Cabbage seed pod weevil (Ceutorhynchus obstrictus), swede midge (Contarinia nasturtii), and tarnished plant bug (Lygus lineolaris) are also severe pests on canola. Minor pests include aphids (cabbage aphid, Brevicoryne brassicae and turnip aphid, Hyadaphis erysimi) and grasshopper, Melanoplus sanguinipes.
This thesis is an investigation into the understanding of flea beetle (Phyllotreta spp.) resistance in spring-type and winter-type canola quality Brassica napus L.. Canola is one of the world's most widely grown oilseed crops and an economically important crop in Western Canada. Genetic resistance to this common pest would add to the available tactics for integrated pest management of flea beetles in canola. The purpose of this research was to better understand the interactions of the flea beetle with canola at key feeding times in the life cycle of the flea beetle and identify genetic components related to flea beetle herbivory on canola seedlings. The objectives were to: 1) investigate seasonal effects of flea beetle herbivory on both spring-type and winter-type canola; and 2) identify quantitative trait loci (QTL) for flea beetle herbivory in two winter-type doubled haploid (DH) populations using simple sequence repeat (SSR) markers and single nucleotide polymorphic (SNP) markers. Year and seasonal effects were noted but overall trends amongst entries were similar concluding that flea beetle feeding patterns did not change throughout its life cycle. Spring-type and winter-type germplasm reacted similarly under flea beetle feeding. As such, there does not appear to be any novel resistance mechanisms that evolved as a result of divergent growth habit types in canola. Seven QTL were identified over the iii two DH populations studied. Linkage group (LG) N13 had multiple QTL identified. The remaining QTL were located on LG N04, N06, N15 and N17. It is unknown as to what mechanisms these QTL are associated with. The results of this thesis provide insight into flea beetle-canola plant interactions and identify some genetic areas of interest related to flea beetle herbivory in canola.
Growth requirements and development of cole crops and lettuce; Managing pests in cole crops and lettuce; Insects; Diseases; Abiotic disorders; Nematodes; Vertebrates; Weeds.
Integrated Pest Management for Crops and Pastures describes in straightforward language what is required for farmers to successfully implement Integrated Pest Management (IPM) in cropping and grazing operations. It explains the differences between conventional pesticide-based controls and IPM, and demonstrates the advantages of IPM. Effective control of pests depends on a number of approaches, not just chemical or genetic engineering. The opening chapters cover the different approaches to pest management, and the importance of identification and monitoring of pests and beneficials. Most farmers and advisors can identify major pests but would struggle to recognise a range of beneficial species. Without this information it is impossible to make appropriate decisions on which control methods to use, especially where pests are resistant to insecticides. The book goes on to deal with the control methods: biological, cultural and chemical. The biological control agents discussed include both native and introduced species that attack pests. Cultural changes that have led to an increase in the incidence or severity of pest attack are also examined. The chapter on chemical control describes the different ways chemicals can affect beneficial species, also detailing acute, sub-lethal and transient toxicities of pesticides, drawing on examples from horticulture where necessary. Finally, the authors bring all the components of integrated pest management together and show farmers how to put their IPM plan into action.
This authoritative multi-author reference covers the pests of all major vegetable crops grown outdoors in temperate latitudes. Details are given on the geographical distribution, description, life-cycle, damage and control of each pest. Emphasis is given to non-chemical methods of pest management.
Field Crop Arthropod Pests of Economic Importance presents detailed descriptions of the biology and ecology of important arthropod pest of selected global field crops. Standard management options for insect pest control on crops include biological, non-chemical, and chemical approaches. However, because agricultural crops face a wide range of insect pests throughout the year, it can prove difficult to find a simple solution to insect pest control in many, if not most, cropping systems. A whole-farm or integrated pest management approach combines cultural, natural, and chemical controls to maintain insect pest populations below levels that cause economic damage to the crop. This practice requires accurate species identification and thorough knowledge of the biology and ecology of the target organism. Integration and effective use of various control components is often enhanced when the target organism is correctly identified, and its biology and ecology are known. This book provides a key resource toward that identification and understanding. Students and professionals in agronomy, insect detection and survey, and economic entomology will find the book a valuable learning aid and resource tool. Includes insect synonyms, common names, and geographic distribution Provides information on natural enemies Is thoroughly referenced for future research
This book covers alternative insect control strategies, such as the allelopathy phenomenon, tactics in integrated pest management of opportunistic generalist insect species, biological control of root pathogens, insect pest control by polyculture strategy, application of several integrated pest management programs, irrigation tactics and soil physical processes, and carbon stocks to manage weeds.
Oilseed rape is a major arable crop in both Europe and North America. It is attacked by unique complexes of insect pests still largely controlled through the application of chemical insecticides. Crop management systems for the future must combine sustainability with environmental acceptability to satisfy both social and economic demands. This book, in its 17 chapters each led by a world expert, reviews research progress towards developing integrated pest management systems for the crop that enhance conservation biocontrol. This approach is particularly timely because of the development in Europe of insecticide resistance in the pollen beetle, a major pest of the crop. The past decade has seen considerable progress in our knowledge of the parasitoids and predators that contribute to biocontrol, of their distribution patterns, and their behavioural ecology, both within and without the crop. There is potential for natural enemy conservation through modification of within-field crop husbandry practices, as well as, on the landscape scale, through habitat manipulation to encourage vegetational diversity. This book will prove invaluable as a text for researchers, university teachers, graduate scientists, extension workers and growers involved in integrated pest management.