Download Free Integrated Biorefineries Book in PDF and EPUB Free Download. You can read online Integrated Biorefineries and write the review.

Integrated Biorefineries: Design, Analysis, and Optimization examines how to create a competitive edge in biorefinery innovation through integration into existing processes and infrastructure. Leading experts from around the world working in design, synthesis, and optimization of integrated biorefineries present the various aspects of this complex process, capturing the state of the art in the advancing bioeconomy. The book defines an integrated biorefinery as a processing facility that transforms biomass into value-added products—from biofuels and biochemicals to food and pharmaceuticals. The chapters cover biorefinery product and process design, supply chains, process analysis, feedstocks, technologies, and policy and environmental analysis. They focus on second-generation feedstocks, including forestry resources, energy crops, agricultural residues, oils, and various waste materials. With the growing interest in sustainability in general and in renewable resources in industrial facilities, biorefineries are likely to play increasingly significant roles and have greater economic, environmental, and societal impact. This book fills an information gap by presenting cutting-edge advances that can effectively guide engineers and decision makers in the synthesis, selection, design, analysis, and optimization of biorefineries.
Integrated Biorefineries: Design, Analysis, and Optimization examines how to create a competitive edge in biorefinery innovation through integration into existing processes and infrastructure. Leading experts from around the world working in design, synthesis, and optimization of integrated biorefineries present the various aspects of this complex
This reference book describes how bioprocessing and biotechnology could enhance the value extracted from wood-based lignocellulosic fiber by employing both biochemical and thermochemical conversion processes. It documents recent accomplishments and suggests future prospects for research and development of integrated forest biorefineries (IFBR) as the path forward for the pulp, paper and other fiber-processing industries. This is the only book to cover this area of high economic, social, and environmental importance. It is aimed at industrialists and academics from diverse science and engineering backgrounds including chemical and biotechnology companies, governmental and professional bodies, and scholarly societies. The Editor and contributors are internationally recognized scientists and many are leaders in their respective fields. The book starts with an introductory overview of the current state of biorefining and a justification for future developments. The next four chapters deal with social, economic and environmental issues related to regulations, biomass production and supply, process modelling, and life cycle analysis. Subsequent chapters focus on the extraction of biochemicals from biomass and their potential utilization to add value to the IFBR prior to pulping. The book then presents, compares and evaluates two types of forest biorefineries based on kraft and organosolv pulping. Finally, the book assess the potential of waste biomass and streams, such paper mill sludge and black liquor, to serve as feedstock for biofuel production and value-added biomaterials through both the biochemical and thermochemical routes of biomass bioprocessing. The economics of the described IFBR processes and products, and their environmental impact, is a major focus in most of the chapters. Practical examples are presented where relevant and applicable.
This book discusses the biorefinery of biomass feedstocks. In-depth chapters highlight the scientific and technical aspects and present a techno-economic analysis of such systems. By using a TEA approach, the authors present feasible pathways for the conversion of biomass (both residual biomass, energy crops, and algae biomass), showing the different possibilities for the production of biochemical materials, biofuels, and fertilizers. The concepts presented in this book will link companies, investors, and governments by providing a framework that will help reduce pollutants and create a biomass-related economy that incorporates the newest developments and technologies in the area.
Biorefineries outlines the processes and steps to successfully scale up production of two types of biofuels, butanol and ethanol, from cellulosic residues for commercial purposes. It covers practical topics, including biomass availability, pretreatment, fermentation, and water recycling, as well as policy and economic factors. This reflects the unique expertise of the editor team, whose backgrounds range from wood and herbaceous feedstocks to process economics and industrial expertise. The strategies presented in this book help readers to design integrated and efficient processes to reduce the cost of production and achieve an economically viable end product - Outlines the economic benefits of designing a single operational process. - Includes all currently available processes on pretreatment, fermentation and recovery - Covers all pretreatment, fermentation, and product recovery options - Focuses on biofuels but acts as a stepping stone to develop cost-efficient processes for an array of commodity chemicals
This book critically discusses different aspects of algal production systems and several of the drawbacks related to microalgal biomass production, namely, low biomass yield, and energy-consuming harvesting, dewatering, drying and extraction processes. These provide a background to the state-of-the-art technologies for algal cultivation, CO2 sequestration, and large-scale application of these systems. In order to tap the commercial potential of algae, a biorefinery concept has been proposed that could help to extract maximum benefits from algal biomass. This refinery concept promotes the harvesting of multiple products from the feedstock so as to make the process economically attractive. For the last few decades, algal biomass has been explored for use in various products such as fuel, agricultural crops, pigments and pharmaceuticals, as well as in bioremediation. To meet the huge demand, there has been a focus on large-scale production of algal biomass in closed or open photobioreactors. Different nutritional conditions for algal growth have been explored, such as photoautotrophic, heterotrophic, mixotrophic and oleaginous. This book is aimed at a wide audience, including undergraduates, postgraduates, academics, energy researchers, scientists in industry, energy specialists, policy makers and others who wish to understand algal biorefineries and also keep abreast of the latest developments.
Reviews the latest advances in biofuel manufacturing technologies and discusses the deployment of other renewable energy for transportation Aimed at providing an interface useful to business and scientific managers, this book focuses on the key challenges that still impede the realization of the billion-ton renewable fuels vision. It places great emphasis on a global view of the topic, reviewing deployment and green energy technology in different countries across Africa, Asia, South America, the EU, and the USA. It also integrates scientific, technological, and business development perspectives to highlight the key developments that are necessary for the global replacement of fossil fuels with green energy solutions. Green Energy to Sustainability: Strategies for Global Industries examines the most recent developments in biofuel manufacturing technologies in light of business, financial, value chain, and supply chain concerns. It also covers the use of other renewable energy sources like solar energy for transportation and proposes a view of the challenges over the next two to five decades, and how these will deeply modify the industrial world in the third millennium. The coming of age of electric vehicles is also looked at, as is the impact of their deployment on the biomass to biofuels value chain. Offers extensive updates on the field of green energy for global industries Covers the structure of the energy business; chemicals and diesel from biomass; ethanol and butanol; hydrogen and methane; and more Provides an expanded focus on the next generation of energy technologies Reviews the latest advances in biofuel manufacturing technologies Integrates scientific, technological and business perspectives Highlights important developments needed for replacing fossil fuels with green energy Green Energy to Sustainability: Strategies for Global Industries will appeal to academic researchers working on the production of fuels from renewable feedstocks and those working in green and sustainable chemistry, and chemical/process engineering. It is also an excellent textbook for courses in bioprocessing technology, renewable resources, green energy, and sustainable chemistry.
Waste Biorefinery: Integrating Biorefineries for Waste Valorisation provides the various options available for several renewable waste streams. The book includes scientific and technical information pertaining to the most advanced and innovative processing technologies used for the conversion of biogenic waste to biofuels, energy products and biochemicals. In addition, the book reports on recent developments and new achievements in the field of biochemical and thermo-chemical methods and the necessities and potential generated by different kinds of biomass in presumably more decentralized biorefineries. The book presents an assortment of case-studies from developing and developed countries pertaining to the use of sustainable technologies for energy recovery from different waste matrices. Advantages and limitations of different technologies are also discussed by considering the local energy demands, government policies, environmental impacts, and education in bioenergy. - Provides information on the most advanced and innovative processes for biomass conversion - Covers information on biochemical and thermo-chemical processes and products development on the principles of biorefinery - Includes information on the integration of processes and technologies for the production of biofuels, energy products and biochemicals - Demonstrates the application of various processes with proven case studies
Sets the stage for large-scale production of biofuels and bio-based chemicals In response to diminishing supplies as well as the environmental hazards posed by fossil fuels and petrochemicals, interest and demand for green, sustainable biofuels and bio-based chemicals are soaring. Biomass may be the solution. It is an abundant carbon-neutral renewable feedstock that can be used for the production of fuels and chemicals. Currently, biorefineries use corn, soybeans, and sugarcane for bioethanol and biodiesel production; however, there are many challenges facing biorefineries, preventing biomass from reaching its full potential. This book provides a comprehensive review of bioprocessing technologies that use lignocellulosic biomass for the production of biofuels, biochemicals, and biopolymers. It begins with an overview of integrated biorefineries. Next, it covers: Biomass feedstocks, including sugar, starch, oil, and energy crops as well as microalgae Pretreatment technologies for lignocellulosic biomass Hydrolytic enzymes used in biorefineries for the hydrolysis of starch and lignocelluloses Bioconversion technologies for current and future biofuels such as ethanol, biodiesel, butanol, hydrogen, and biogas Specialty chemicals, building block chemicals, and biopolymers produced via fermentation Phytochemicals and functional food ingredients extracted from plant materials All the chapters have been written and edited by leading experts in bioprocessing and biorefining technologies. Contributions are based on a thorough review of the literature as well as the authors' firsthand experience developing and working with bioprocessing technologies. By setting forth the current state of the technology and pointing to promising new directions in research, Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers will enable readers to move towards large-scale, sustainable, and economical production of biofuels and bio-based chemicals.
The traditional pulp and paper producers are facing new competitors in tropical and subtropical regions who use the latest and largest installed technologies, and also have wood and labor cost advantages. Due to the increasing global competition, the forest products prices will continue to decrease. To remain viable, the traditional producers need to increase revenue by producing bioenergy and biomaterials in addition to wood, pulp, and paper products. In this so-called Integrated Products Biorefinery, all product lines are highly integrated and energy efficient. Integrated Products Biorefineries present the forest products industry with a unique opportunity to increase revenues and improve environmental sustainability. Integrated Products Biorefinery technologies will allow industry to manufacture high-value chemicals, fuels, and/or electric power while continuing to produce traditional wood, pulp, and paper products. The industry already controls much of the raw material and infrastructure necessary to create Integrated Products Biorefineries, and Agenda 2020 partnerships are speeding development of the key enabling technologies. Once fully developed and commercialized, these technologies will produce enormous energy and environmental benefits for the industry and the nation. Biorefinery in the Pulp and Paper Industry presents the biorefining concept, the opportunities for the pulp and paper industry, and describes and discusses emerging biorefinery process options. This book also highlights the environmental impact and the complex and ambiguous decision-making challenges that mills will face when considering implementing the biorefinery. - Provides up-to-date and authoritative information, citing pertinent research, on this timely and important topic - Covers in great depth the biorefining concept, opportunities for the pulp and paper industry, and emerging biorefinery process options - Highlights the environmental impact and the complex and ambiguous decision-making challenges that mills will face when considering implementing the biorefinery