Download Free Integrated Approach To The Dynamics And Control Of Maneuvering Flexible Aircraft Book in PDF and EPUB Free Download. You can read online Integrated Approach To The Dynamics And Control Of Maneuvering Flexible Aircraft and write the review.

This work uses a fundamental approach to the problem of simulating the flight of flexible aircraft. To this end, it integrates into a single formulation the pertinent disciplines, namely, analytical dynamics, structural dynamics, aerodynamics, and controls. It considers both the rigid body motions of the aircraft, three translations (forward motion, sideslip and plunge) and three rotations (roll, pitch and yaw), and the elastic deformations of every point of the aircraft, as well as the aerodynamic, propulsion, gravity and control forces. The equations of motion are expressed in a form ideally suited for computer processing. A perturbation approach yields a flight dynamics problem for the motions of a quasi-rigid aircraft and an 'extended aeroelasticity' problem for the elastic deformations and perturbations in the rigid body motions, with the solution of the first problem entering as an input into the second problem. The control forces for the flight dynamics problem are obtained by an 'inverse' process and the feedback controls for the extended aeroservoelasticity problem are determined by the LQG theory. A numerical example presents time simulations of rigid body perturbations and elastic deformations about 1) a steady level flight and 2) a level steady turn maneuver.Waszak, Martin R. (Technical Monitor) and Meirovitch, Leonard and Tuzcu, IlhanLangley Research CenterAEROSERVOELASTICITY; AERODYNAMICS; FLEXIBLE WINGS; AIRCRAFT MANEUVERS; FLIGHT SIMULATION; AIRCRAFT CONTROL; ROLL; SIDESLIP; YAW; ELASTIC DEFORMATION; EQUATIONS OF MOTION; LINEAR QUADRATIC GAUSSIAN CONTROL; FEEDBACK CONTROL
Flight Dynamics, Simulation, and Control of Aircraft: For Rigid and Flexible Aircraft explains the basics of non-linear aircraft dynamics and the principles of control-configured aircraft design, as applied to rigid and flexible aircraft, drones, and unmanned aerial vehicles (UAVs). Addressing the details of dynamic modeling, simulation, and control in a selection of aircraft, the book explores key concepts associated with control-configured elastic aircraft. It also covers the conventional dynamics of rigid aircraft and examines the use of linear and non-linear model-based techniques and their applications to flight control. This second edition features a new chapter on the dynamics and control principles of drones and UAVs, aiding in the design of newer aircraft with a combination of propulsive and aerodynamic control surfaces. In addition, the book includes new sections, approximately 20 problems per chapter, examples, simulator exercises, and case studies to enhance and reinforce student understanding. The book is intended for senior undergraduate and graduate mechanical and aerospace engineering students taking Flight Dynamics and Flight Control courses. Instructors will be able to utilize an updated Solutions Manual and figure slides for their course.
Advanced Flight Dynamics aim to integrate the subjects of aircraft performance, trim and stability/control in a seamless manner. Advanced Flight Dynamics highlights three key and unique viewpoints. Firstly, it follows the revised and corrected aerodynamic modeling presented previously in recent textbook on Elementary Flight Dynamics. Secondly, it uses bifurcation and continuation theory, especially the Extended Bifurcation Analysis (EBA) procedure devised by the authors, to blend the subjects of aircraft performance, trim and stability, and flight control into a unified whole. Thirdly, rather than select one control design tool or another, it uses the generalized Nonlinear Dynamic Inversion (NDI) methodology to illustrate the fundamental principles of flight control. Advanced Flight Dynamics covers all the standard airplane maneuvers, various types of instabilities normally encountered in flight dynamics and illustrates them with real-life airplane data and examples, thus bridging the gap between the teaching of flight dynamics/ control theory in the university and its practice in airplane design bureaus. The expected reader group for this book would ideally be senior undergraduate and graduate students, practicing aerospace/flight simulation engineers/scientists from industry as well as researchers in various organizations. Key Features: Focus on unified nonlinear approach, with nonlinear analysis tools. Provides an up-to-date, corrected, and unified presentation of aircraft trim, stability and control analysis including nonlinear phenomena and closed-loop stability analysis. Contains a computational tool and real-life example carried through the chapters. Includes complementary nonlinear dynamic inversion control approach, with relevant aircraft examples. Fills the gap in the market for a text including non-linear flight dynamics and continuation methods.
Explore the interface between aeroelasticity, flight dynamics and control in this fresh, multidisciplinary approach. New insights into the interaction between these fields, rarely separately considered in most modern aircraft, are fully illustrated in this one-of-a-kind book. The comprehensive, systematic coverage will enable the reader to analyse and design next-generation aircraft. Presenting basic concepts in a rigorous yet accessible way, the book builds up to state-of-the-art models through an intuitive step-by-step approach. Both linear and non-linear attributes are covered, and by revisiting classical solutions using modern analysis methods this book provides a unique, modern perspective to bridge the gap between disciplines. Numerous original numerical examples, including online source codes, help to build intuition through hands-on activities. This book will empower the reader to design better and more environmentally friendly aircraft, and is an ideal resource for graduate students, researchers and aerospace engineers.
Previous ed.: 2007. - Includes index.
Get a complete understanding of aircraft control and simulation Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is a comprehensive guide to aircraft control and simulation. This updated text covers flight control systems, flight dynamics, aircraft modeling, and flight simulation from both classical design and modern perspectives, as well as two new chapters on the modeling, simulation, and adaptive control of unmanned aerial vehicles. With detailed examples, including relevant MATLAB calculations and FORTRAN codes, this approachable yet detailed reference also provides access to supplementary materials, including chapter problems and an instructor's solution manual. Aircraft control, as a subject area, combines an understanding of aerodynamics with knowledge of the physical systems of an aircraft. The ability to analyze the performance of an aircraft both in the real world and in computer-simulated flight is essential to maintaining proper control and function of the aircraft. Keeping up with the skills necessary to perform this analysis is critical for you to thrive in the aircraft control field. Explore a steadily progressing list of topics, including equations of motion and aerodynamics, classical controls, and more advanced control methods Consider detailed control design examples using computer numerical tools and simulation examples Understand control design methods as they are applied to aircraft nonlinear math models Access updated content about unmanned aircraft (UAVs) Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is an essential reference for engineers and designers involved in the development of aircraft and aerospace systems and computer-based flight simulations, as well as upper-level undergraduate and graduate students studying mechanical and aerospace engineering.
Aeronautical engineers concerned with the analysis of aircraft dynamics and the synthesis of aircraft flight control systems will find an indispensable tool in this analytical treatment of the subject. Approaching these two fields with the conviction that an understanding of either one can illuminate the other, the authors have summarized selected, interconnected techniques that facilitate a high level of insight into the essence of complex systems problems. These techniques are suitable for establishing nominal system designs, for forecasting off-nominal problems, and for diagnosing the root causes of problems that almost inevitably occur in the design process. A complete and self-contained work, the text discusses the early history of aircraft dynamics and control, mathematical models of linear system elements, feedback system analysis, vehicle equations of motion, longitudinal and lateral dynamics, and elementary longitudinal and lateral feedback control. The discussion concludes with such topics as the system design process, inputs and system performance assessment, and multi-loop flight control systems. Originally published in 1974. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Offers a review of the newest methodologies for the characterization and modelling of lightweight materials and structures Advances in Multifunctional Lightweight Structures offers a text that provides and in-depth analyses of the thermal, electrical and mechanical responses of multi-functional lightweight structures. The authors, noted experts on the topic, address the most recent and innovative methodologies for the characterization and modelling of lightweight materials and discuss various shell and plate theories. They present multifunctional materials and structures and offer detailed descriptions of the complex modelling of these structures. The text is divided into three sections that demonstrate a keen understanding and awareness for multi-functional lightweight structures by taking a unique approach. The authors explore multi-disciplinary modelling and characterization alongside benchmark problems and applications, topics that are rarely approached in this field. This important book: • Offers an analyses of the thermal, electrical and mechanical responses of multi-functional lightweight structures • Covers innovative methodologies for the characterization and modelling of lightweight materials and structures • Presents a characterization of a wide variety of novel materials • Considers multifunctional novel structures with potential applications in different high-tech industries • Includes efficient and highly accurate methodologies Written for professionals, engineers and researchers in industrial and other specialized research institutions, Advances in Multifunctional Lightweight Structures offers a much needed text to the design practices of existing engineering building services and how these methods combine with recent developments.