Download Free Integral Transformation Operational Calculus And Their Applications Book in PDF and EPUB Free Download. You can read online Integral Transformation Operational Calculus And Their Applications and write the review.

This volume consists of a collection of 14 accepted submissions (including several invited feature articles) to the Special Issue of MDPI's journal Symmetry on the general subject area of integral transformations, operational calculus and their applications from many different parts around the world. The main objective of the Special Issue was to gather review, expository, and original research articles dealing with the state-of-the-art advances in integral transformations and operational calculus as well as their multidisciplinary applications, together with some relevance to the aspect of symmetry. Various families of fractional-order integrals and derivatives have been found to be remarkably important and fruitful, mainly due to their demonstrated applications in numerous diverse and widespread areas of mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables.
It is not the object of the author to present comprehensive cov erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor mation is introduced. The operational calculus of Mikusinski is pre sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu ally exist for such entities as the "Dirac delta-function".
It is not the object of the author to present comprehensive cov erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor mation is introduced. The operational calculus of Mikusinski is pre sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu ally exist for such entities as the "Dirac delta-function".
Even though the theories of operational calculus and integral transforms are centuries old, these topics are constantly developing, due to their use in the fields of mathematics, physics, and electrical and radio engineering. Operational Calculus and Related Topics highlights the classical methods and applications as well as the recent advan
Researches and investigations involving the theory and applications of integral transforms and operational calculus are remarkably wide-spread in many diverse areas of the mathematical, physical, chemical, engineering and statistical sciences. This Special Issue contains a total of 36 carefully-selected and peer-reviewed articles which are authored by established researchers from many countries. Included in this Special Issue are review, expository and original research articles dealing with the recent advances on the topics of integral transforms and operational calculus as well as their multidisciplinary applications
Keeping the style, content, and focus that made the first edition a bestseller, Integral Transforms and their Applications, Second Edition stresses the development of analytical skills rather than the importance of more abstract formulation. The authors provide a working knowledge of the analytical methods required in pure and applied mathematics, physics, and engineering. The second edition includes many new applications, exercises, comments, and observations with some sections entirely rewritten. It contains more than 500 worked examples and exercises with answers as well as hints to selected exercises. The most significant changes in the second edition include: New chapters on fractional calculus and its applications to ordinary and partial differential equations, wavelets and wavelet transformations, and Radon transform Revised chapter on Fourier transforms, including new sections on Fourier transforms of generalized functions, Poissons summation formula, Gibbs phenomenon, and Heisenbergs uncertainty principle A wide variety of applications has been selected from areas of ordinary and partial differential equations, integral equations, fluid mechanics and elasticity, mathematical statistics, fractional ordinary and partial differential equations, and special functions A broad spectrum of exercises at the end of each chapter further develops analytical skills in the theory and applications of transform methods and a deeper insight into the subject A systematic mathematical treatment of the theory and method of integral transforms, the book provides a clear understanding of the subject and its varied applications in mathematics, applied mathematics, physical sciences, and engineering.
This is a substantially updated, extended and reorganized third edition of an introductory text on the use of integral transforms. Chapter I is largely new, covering introductory aspects of complex variable theory. Emphasis is on the development of techniques and the connection between properties of transforms and the kind of problems for which they provide tools. Around 400 problems are accompanied in the text. It will be useful for graduate students and researchers working in mathematics and physics.
A cross between a textbook and a monograph, this extensive introduction discusses all of the most important transformations, compiling information otherwise scattered throughout the literature. Attention is concentrated on the operational calculus of the major integral transformations and some of its applications, with an investigation of transforms in spaces of functions and of distributions. Annotation copyrighted by Book News, Inc., Portland, OR
In preparing this second edition I have restricted myself to making small corrections and changes to the first edition. Two chapters have had extensive changes made. First, the material of Sections 14.1 and 14.2 has been rewritten to make explicit reference to the book of Bleistein and Handelsman, which appeared after the original Chapter 14 had been written. Second, Chapter 21, on numerical methods, has been rewritten to take account of comparative work which was done by the author and Brian Martin, and published as a review paper. The material for all of these chapters was in fact, prepared for a transla tion of the book. Considerable thought has been given to a much more com prehensive revision and expansion of the book. In particular, there have been spectacular advances in the solution of some non-linear problems using isospectra1 methods, which may be re garded as a generalization of the Fourier transform. However, the subject is a large one, and even a modest introduction would have added substantially to the book. Moreover, the recent book by Dodd et al. is at a similar level to the present volume. Similarly, I have refrained from expanding the chapter on num erical methods into a complete new part of the book, since a specialized monograph on numerical methods is in preparation in collaboration with a colleague.
Introduction to the Operational Calculus is a translation of "Einfuhrung in die Operatorenrechnung, Second Edition." This book deals with Heaviside's interpretation, on the Laplace integral, and on Jan Mikusinki's fundamental work "Operational Calculus." Throughout the book, basic algebraic concepts appear as aids to understanding some relevant points of the subject. An important field for research in analysis is asymptotic properties. This text also discusses examples to show the potentialities in applying operational calculus that run beyond ordinary differential equations with constant coefficients. In using operational calculus to solve more complicated problems than those of ordinary differential equations with constant coefficients, the concept of convergence assumes a significant role in the field of operators. This book also extends the Laplace transformation and applies it to non-transformable functions. This text also present three methods in which operational calculus can be modified and become useful in solving specific ranges of problems. These methods pertain to the finite Laplace transformation, to partial differential equations, and to the Volterra integral equations and ordinary differential equations with variable coefficients. This book can prove valuable for mathematicians, students, and professor of calculus and advanced mathematics.