Download Free Integral Representations For A Class Of Meijer G Functions Book in PDF and EPUB Free Download. You can read online Integral Representations For A Class Of Meijer G Functions and write the review.

Closed form rational approximations are given for the Meijer G-function. In a previous study, the error was formulated by use of differential operators. In the present paper, an error representation based on difference operators is derived. (Author).
The subject of special functions is rich and expanding continuously with the emergence of new problems encountered in engineering and applied science applications. The development of computational techniques and the rapid growth in computing power have increased the importance of the special functions and their formulae for analytic representations
This book depicts a wide range of situations in which there exist finite form representations for the Meijer G and the Fox H functions. Accordingly, it will be of interest to researchers and graduate students who, when implementing likelihood ratio tests in multivariate analysis, would like to know if there exists an explicit manageable finite form for the distribution of the test statistics. In these cases, both the exact quantiles and the exact p-values of the likelihood ratio tests can be computed quickly and efficiently. The test statistics in question range from common ones, such as those used to test e.g. the equality of means or the independence of blocks of variables in real or complex normally distributed random vectors; to far more elaborate tests on the structure of covariance matrices and equality of mean vectors. The book also provides computational modules in Mathematica®, MAXIMA and R, which allow readers to easily implement, plot and compute the distributions of any of these statistics, or any other statistics that fit into the general paradigm described here.
This is the second of three major volumes which present a comprehensive treatment of the theory of the main classes of special functions from the point of view of the theory of group representations. This volume deals with the properties of special functions and orthogonal polynomials (Legendre, Gegenbauer, Jacobi, Laguerre, Bessel and others) which are related to the class 1 representations of various groups. The tree method for the construction of bases for representation spaces is given. `Continuous' bases in the spaces of functions on hyperboloids and cones and corresponding Poisson kernels are found. Also considered are the properties of the q-analogs of classical orthogonal polynomials, related to representations of the Chevalley groups and of special functions connected with fields of p-adic numbers. Much of the material included appears in book form for the first time and many of the topics are presented in a novel way. This volume will be of great interest to specialists in group representations, special functions, differential equations with partial derivatives and harmonic anlysis. Subscribers to the complete set of three volumes will be entitled to a discount of 15%.
TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.
This book develops integral identities, mostly involving multidimensional functions and infinite limits of integration, whose evaluations are intractable by common means. It exposes a methodology based on the multivariate power substitution and its variants, assisted by the software tool Mathematica. The approaches introduced comprise the generalized method of exhaustion, the multivariate power substitution and its variants, and the use of permutation symmetry to evaluate definite integrals, which are very important both in their own right, and as necessary intermediate steps towards more involved computation. A key tenet is that such approaches work best when applied to integrals having certain characteristics as a starting point. Most integrals, if used as a starting point, will lead to no result at all, or will lead to a known result. However, there is a special class of integrals (i.e., innovative integrals) which, if used as a starting point for such approaches, will lead to new and useful results, and can also enable the reader to generate many other new results that are not in the book. The reader will find a myriad of novel approaches for evaluating integrals, with a focus on tools such as Mathematica as a means of obtaining useful results, and also checking whether they are already known. Results presented involve the gamma function, the hypergeometric functions, the complementary error function, the exponential integral function, the Riemann zeta function, and others that will be introduced as they arise. The book concludes with selected engineering applications, e.g., involving wave propagation, antenna theory, non-Gaussian and weighted Gaussian distributions, and other areas. The intended audience comprises junior and senior sciences majors planning to continue in the pure and applied sciences at the graduate level, graduate students in mathematics and the sciences, and junior and established researchers in mathematical physics, engineering, and mathematics. Indeed, the pedagogical inclination of the exposition will have students work out, understand, and efficiently use multidimensional integrals from first principles.
In this volume various applications are discussed, in particular to the hyper-Bessel differential operators and equations, Dzrbashjan-Gelfond-Leontiev operators and Borel type transforms, convolutions, new representations of hypergeometric functions, solutions to classes of differential and integral equations, transmutation method, and generalized integral transforms. Some open problems are also posed. This book is intended for graduate and post-graduate students, lecturers, researchers and others working in applied mathematical analysis, mathematical physics and related disciplines.
The new standard reference on mathematical functions, replacing the classic but outdated handbook from Abramowitz and Stegun. Includes PDF version.
This Special Issue is devoted to some serious problems that the Fractional Calculus (FC) is currently confronted with and aims at providing some answers to the questions like “What are the fractional integrals and derivatives?”, “What are their decisive mathematical properties?”, “What fractional operators make sense in applications and why?’’, etc. In particular, the “new fractional derivatives and integrals” and the models with these fractional order operators are critically addressed. The Special Issue contains both the surveys and the research contributions. A part of the articles deals with foundations of FC that are considered from the viewpoints of the pure and applied mathematics, and the system theory. Another part of the Special issue addresses the applications of the FC operators and the fractional differential equations. Several articles devoted to the numerical treatment of the FC operators and the fractional differential equations complete the Special Issue.
The aim of this book is to develop a new approach which we called the hyper geometric one to the theory of various integral transforms, convolutions, and their applications to solutions of integro-differential equations, operational calculus, and evaluation of integrals. We hope that this simple approach, which will be explained below, allows students, post graduates in mathematics, physicists and technicians, and serious mathematicians and researchers to find in this book new interesting results in the theory of integral transforms, special functions, and convolutions. The idea of this approach can be found in various papers of many authors, but systematic discussion and development is realized in this book for the first time. Let us explain briefly the basic points of this approach. As it is known, in the theory of special functions and its applications, the hypergeometric functions play the main role. Besides known elementary functions, this class includes the Gauss's, Bessel's, Kummer's, functions et c. In general case, the hypergeometric functions are defined as a linear combinations of the Mellin-Barnes integrals. These ques tions are extensively discussed in Chapter 1. Moreover, the Mellin-Barnes type integrals can be understood as an inversion Mellin transform from the quotient of products of Euler's gamma-functions. Thus we are led to the general construc tions like the Meijer's G-function and the Fox's H-function.