Download Free Integral Representations And Residues In Multidimensional Complex Analysis Book in PDF and EPUB Free Download. You can read online Integral Representations And Residues In Multidimensional Complex Analysis and write the review.

This book deals with integral representations of holomorphic functions of several complex variables, the multidimensional logarithmic residue, and the theory of multidimensional residues. Applications are given to implicit function theory, systems of nonlinear equations, computation of the multiplicity of a zero of a mapping, and computation of combinatorial sums in closed form. Certain applications in multidimensional complex analysis are considered. The monograph is intended for specialists in theoretical and applied mathematics and theoretical physics, and for postgraduate and graduate students interested in multidimensional complex analysis or its applications.
The monograph is devoted to integral representations for holomorphic functions in several complex variables, such as Bochner-Martinelli, Cauchy-Fantappiè, Koppelman, multidimensional logarithmic residue etc., and their boundary properties. The applications considered are problems of analytic continuation of functions from the boundary of a bounded domain in C^n. In contrast to the well-known Hartogs-Bochner theorem, this book investigates functions with the one-dimensional property of holomorphic extension along complex lines, and includes the problems of receiving multidimensional boundary analogs of the Morera theorem. This book is a valuable resource for specialists in complex analysis, theoretical physics, as well as graduate and postgraduate students with an understanding of standard university courses in complex, real and functional analysis, as well as algebra and geometry.
Requiring only some understanding of homological algebra and commutative ring theory, this book gives those who have encountered Grothendieck residues in geometry or complex analysis an understanding of residues, as well as an appreciation of Hochschild homology.
Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1).
Students often find, in setting out to study algebraic geometry, that most of the serious textbooks on the subject require knowledge of ring theory, field theory, local rings and transcendental field extensions, and even sheaf theory. Often the expected background goes well beyond college mathematics. This book, aimed at senior undergraduates and graduate students, grew out of Miyanishi's attempt to lead students to an understanding of algebraic surfaces while presenting the necessary background along the way. Originally published in the Japanese in 1990, it presents a self-contained introduction to the fundamentals of algebraic geometry. This book begins with background on commutative algebras, sheaf theory, and related cohomology theory. The next part introduces schemes and algebraic varieties, the basic language of algebraic geometry. The last section brings readers to a point at which they can start to learn about the classification of algebraic surfaces.
This book studies translation-invariant function spaces and algebras on homogeneous manifolds. The central topic is the relationship between the homogeneous structure of a manifold and the class of translation-invariant function spaces and algebras on the manifold. The author obtains classifications of translation-invariant spaces and algebras of functions on semisimple and nilpotent Lie groups, Riemann symmetric spaces, and bounded symmetric domains. When such classifications are possible, they lead in many cases to new characterizations of the classical function spaces, from the point of view of their group of admissible changes of variable. The algebra of holomorphic functions plays an essential role in these classifications when a homogeneous complex or $CR$-structure exists on the manifold. This leads to new characterizations of holomorphic functions and their boundary values for one- and multidimensional complex domains.
The theory of commutative fields is a fundamental area of mathematics, particularly in number theory, algebra, and algebraic geometry. However, few books provide sufficient treatment of this topic. The author aimed to provide an introduction to commutative fields that would be useful to those studying the topic for the first time as well as to those wishing a reference book. The book presents, with as few prerequisites as possible, all of the important and fundamental results on commutative fields. Each chapter ends with exercises, making the book suitable as a textbook for graduate courses or for independent study.
"The book is devoted to geometry of algebraic varieties in projective spaces. Among the objects considered in some detail are tangent and secant varieties, Gauss maps, dual varieties, hyperplane sections, projections, and varieties of small codimension. Emphasis is made on the study of interplay between irregular behavior of (higher) secant varieties and irregular tangencies to the original variety. Classification of varieties with unusual tangential properties yields interesting examples many of which arise as orbits of representations of algebraic groups."--ABSTRACT.
Historical introduction. The Jacobian inversion problem Periodic functions of several complex variables Riemann matrices. Jacobian (intermediate) functions Construction of Jacobian functions of a given type. Theta functions and Abelian functions. Abelian and Picard manifolds Appendix A. Skew-symmetric determinants Appendix B. Divisors of analytic functions Appendix C. A summary of the most important formulas
The theory of holomorphic functions of several complex variables emerged from the attempt to generalize the theory in one variable to the multidimensional situation. Research in this area has led to the discovery of many sophisticated facts, structures, ideas, relations, and applications. This deepening of knowledge, however, has also revealed more