Download Free Integral Mechanical Attachment For Timber Folded Plate Structures Book in PDF and EPUB Free Download. You can read online Integral Mechanical Attachment For Timber Folded Plate Structures and write the review.

Integral Mechanical Attachment, highlights on one of the world's oldest technologies and makes it new again. Think of buttons and toggles updated to innovative snaps, hooks, and interlocking industrial parts. Mechanical fasteners have been around as long as mankind, but manufacturers of late have been re-discovering their quick, efficient and fail proof advantages when using them as interlocking individual components as compared with such traditional means of joining materials like welding, soldering, gluing and using nuts bolts, rivets and other similar devices. For many years, it has been virtually impossible to find a single-source reference that provides an overview of the various categories of fastening systems and their various applications. Design engineers should find this book to be an invaluable source of detailed, illustrated information on how such fasteners work, and how they can save time and money. Students, too, will find this book to be extremely useful for courses in mechanical design, machine design, product development and other related areas where fastening and joining subjects are taught. This will be the first reference book to come along in many years that will fully illustrate the major classes of integral mechanical fasteners, replete with examples of typical assembly and ideas and suggestions for further research.* Covers all major techniques for integral mechanical attachment within the context of other types of joining including chemical (adhesive) bonding, melting and solidification (welding, soldering, brazing), and mechanical joining (fasteners and part features)* Includes specific chapters for particular attachment considerations by materials type, including metals, plastics, ceramics, glass, wood, and masonry* Provides unique coverage of mechanical/electrical connections for reliable contact and use
Design of Integrally-Attached Timber Plate Structures outlines a new design methodology for digitally fabricated spatial timber plate structures, presented with examples from recent construction projects. It proposes an innovative and sustainable design methodology, algorithmic geometry processing, structural optimization, and digital fabrication; technology transfer and construction are formulated and widely discussed. The methodology relies on integral mechanical attachment whereby the connection between timber plates is established solely through geometric manipulation, without additional connectors, such as nails, screws, dowels, adhesives, or welding. The transdisciplinary design framework for spatial timber plate structures brings together digital architecture, computer science, and structural engineering, covering parametric modeling and architectural computational design, geometry exploration, the digital fabrication assembly of engineered timber panels, numerical simulations, mechanical characterization, design optimization, and performance improvement. The method is demonstrated through different prototypes, physical models, and three build examples, focusing specifically on the design of the timber-plate roof structure of 23 large span arches called the Annen Headquarters in Luxembourg. This is useful for the architecture, engineering, and construction (AEC) sector and shows how new structural optimization processes can be reinvented through geometrical adaptions to control global and local geometries of complex structures. This text is ideal for structural engineering professionals and architects in both industry and academia, and construction companies.
Design of Integrally-Attached Timber Plate Structures outlines a new design methodology for digitally fabricated spatial timber plate structures, presented with examples from recent construction projects. It proposes an innovative and sustainable design methodology, algorithmic geometry processing, structural optimization, and digital fabrication; technology transfer and construction are formulated and widely discussed. The methodology relies on integral mechanical attachment whereby the connection between timber plates is established solely through geometric manipulation, without additional connectors, such as nails, screws, dowels, adhesives, or welding. The transdisciplinary design framework for spatial timber plate structures brings together digital architecture, computer science, and structural engineering, covering parametric modeling and architectural computational design, geometry exploration, the digital fabrication assembly of engineered timber panels, numerical simulations, mechanical characterization, design optimization, and performance improvement. The method is demonstrated through different prototypes, physical models, and three build examples, focusing specifically on the design of the timber-plate roof structure of 23 large span arches called the Annen Headquarters in Luxembourg. This is useful for the architecture, engineering, and construction (AEC) sector and shows how new structural optimization processes can be reinvented through geometrical adaptions to control global and local geometries of complex structures. This text is ideal for structural engineering professionals and architects in both industry and academia, and construction companies.
Mots-clés de l'auteur: Timber plates ; Integral Mechanical Attachment (IMA) technique ; experimental investigations ; macroscopic model ; Finite Element Method (FEM) ; algorithmic-aided design ; CAD-to-CAE data exchange.
Wood is usually perceived as a "traditional" material. However, the properties of this material have now for some time made it possible to design free shapes and highly complex structures. Today, the wood laboratory of the EPF Lausanne, which was originally founded by Julius Natterer, is testing the production of origami structures, ribbed shells, fabric structures and curved panels under the guidance of Professor Weinand using digital calculation and computer-aided processing methods. The research results are tested in prototypes, which demonstrate the potential applications in large-scale timber buildings. By exploring the hitherto unused potential of wood as a construction material, this book provides an exciting and inspiring outlook on a new generation of timber buildings.
Integral Mechanical Attachment, highlights on one of the world's oldest technologies and makes it new again. Think of buttons and toggles updated to innovative snaps, hooks, and interlocking industrial parts. Mechanical fasteners have been around as long as mankind, but manufacturers of late have been re-discovering their quick, efficient and fail proof advantages when using them as interlocking individual components as compared with such traditional means of joining materials like welding, soldering, gluing and using nuts bolts, rivets and other similar devices. For many years, it has been virtually impossible to find a single-source reference that provides an overview of the various categories of fastening systems and their various applications. Design engineers should find this book to be an invaluable source of detailed, illustrated information on how such fasteners work, and how they can save time and money. Students, too, will find this book to be extremely useful for courses in mechanical design, machine design, product development and other related areas where fastening and joining subjects are taught. This will be the first reference book to come along in many years that will fully illustrate the major classes of integral mechanical fasteners, replete with examples of typical assembly and ideas and suggestions for further research. * Covers all major techniques for integral mechanical attachment within the context of other types of joining including chemical (adhesive) bonding, melting and solidification (welding, soldering, brazing), and mechanical joining (fasteners and part features) * Includes specific chapters for particular attachment considerations by materials type, including metals, plastics, ceramics, glass, wood, and masonry * Provides unique coverage of mechanical/electrical connections for reliable contact and use
In light of environmental challenges architecture is facing, wood is no longer regarded as outmoded, nostalgic, and rooted in the past, but increasingly recognized as one of the most promising building materials for the future. Recent years have seen unprecedented innovation of new technologies for advancing wood architecture. Advancing Wood Architecture offers a comprehensive overview of the new architectural possibilities that are enabled by cutting-edge computational technologies in wood construction. It provides both an overarching architectural understanding and in-depth technological information through built projects and the works of four leading design research groups in Europe. The projects presented include large scale, permanent buildings such as the ETH Arch-Tec Lab Building in Zurich, the Landesgartenschau Exhibition Hall near Stuttgart and the Boiler House in Hooke Park, UK, as well as, built research prototypes investigating additive robotic fabrication, folded plate structures and meteorosensitive building skins. Illustrated in full colour, the book showcases the latest technological developments in design computation, simulation and digital fabrication together with an architectural, engineering and manufacturing perspective, offering an outlook towards novel spatial and constructional opportunities of a material with unrivalled ecological virtues.
The book presents the proceedings of Rob/Arch 2016, the third international conference on robotic fabrication in architecture, art, and design. The work contains a wide range of contemporary topics, from methodologies for incorporating dynamic material feedback into existing fabrication processes, to novel interfaces for robotic programming, to new processes for large-scale automated construction. The latent argument behind this research is that the term ‘file-to-factory’ must not be a reductive celebration of expediency but instead a perpetual challenge to increase the quality of feedback between design, matter, and making.
The Advances in Architectural Geometry (AAG) symposia serve as a unique forum where developments in the design, analysis and fabrication of building geometry are presented. With participation of both academics and professionals, each symposium aims to gather and present practical work and theoretical research that responds to contemporary design challenges and expands the opportunities for architectural form. The fifth edition of the AAG symposia was hosted by the National Centre for Competence in Research Digital Fabrication at ETH Zurich, Switzerland, in September 2016. This book contains the proceedings from the AAG2016 conference and offers detailed insight into current and novel geometrical developments in architecture. The 22 diverse, peer-reviewed papers present cutting-edge innovations in the fields of mathematics, computer graphics, software design, structural engineering, and the design and construction of architecture.