Download Free Integral Global Optimization Book in PDF and EPUB Free Download. You can read online Integral Global Optimization and write the review.

This book treats the subject of global optimization with minimal restrictions on the behavior on the objective functions. In particular, optimal conditions were developed for a class of noncontinuous functions characterized by their having level sets that are robust. The integration-based approach contrasts with existing approaches which require some degree of convexity or differentiability of the objective function. Some computational results on a personal computer are presented.
In recent years global optimization has found applications in many interesting areas of science and technology including molecular biology, chemical equilibrium problems, medical imaging and networks. The collection of papers in this book indicates the diverse applicability of global optimization. Furthermore, various algorithmic, theoretical developments and computational studies are presented. Audience: All researchers and students working in mathematical programming.
This proceedings volume addresses advances in global optimization—a multidisciplinary research field that deals with the analysis, characterization and computation of global minima and/or maxima of nonlinear, non-convex and nonsmooth functions in continuous or discrete forms. The volume contains selected papers from the third biannual World Congress on Global Optimization in Engineering & Science (WCGO), held in the Yellow Mountains, Anhui, China on July 8-12, 2013. The papers fall into eight topical sections: mathematical programming; combinatorial optimization; duality theory; topology optimization; variational inequalities and complementarity problems; numerical optimization; stochastic models and simulation and complex simulation and supply chain analysis.
This book will present the papers delivered at the first U.S. conference devoted exclusively to global optimization and will thus provide valuable insights into the significant research on the topic that has been emerging during recent years. Held at Princeton University in May 1991, the conference brought together an interdisciplinary group of the most active developers of algorithms for global optimization in order to focus the attention of the mathematical programming community on the unsolved problems and diverse applications of this field. The main subjects addressed at the conference were advances in deterministic and stochastic methods for global optimization, parallel algorithms for global optimization problems, and applications of global optimization. Although global optimization is primarily a mathematical problem, it is relevant to several other disciplines, including computer science, applied mathematics, physical chemistry, molecular biology, statistics, physics, engineering, operations research, communication theory, and economics. Global optimization problems originate from a wide variety of mathematical models of real-world systems. Some of its applications are allocation and location problems and VLSI and data-base design problems. Originally published in 1991. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Global optimization concerns the computation and characterization of global optima of nonlinear functions. Such problems are widespread in the mathematical modelling of real systems in a very wide range of applications and the last 30 years have seen the development of many new theoretical, algorithmic and computational contributions which have helped to solve globally multiextreme problems in important practical applications. Most of the existing books on optimization focus on the problem of computing locally optimal solutions. Introduction to Global Optimization, however, is a comprehensive textbook on constrained global optimization that covers the fundamentals of the subject, presenting much new material, including algorithms, applications and complexity results for quadratic programming, concave minimization, DC and Lipschitz problems, and nonlinear network flow. Each chapter contains illustrative examples and ends with carefully selected exercises, designed to help students grasp the material and enhance their knowledge of the methods involved. Audience: Students of mathematical programming, and all scientists, from whatever discipline, who need global optimization methods in such diverse areas as economic modelling, fixed charges, finance, networks and transportation, databases, chip design, image processing, nuclear and mechanical design, chemical engineering design and control, molecular biology, and environmental engineering.
Global optimization is concerned with the computation and characterization of global optima of nonlinear functions. During the past three decades the field of global optimization has been growing at a rapid pace, and the number of publications on all aspects of global optimization has been increasing steadily. Many applications, as well as new theoretical, algorithmic, and computational contributions have resulted. The Handbook of Global Optimization is the first comprehensive book to cover recent developments in global optimization. Each contribution in the Handbook is essentially expository in nature, but scholarly in its treatment. The chapters cover optimality conditions, complexity results, concave minimization, DC programming, general quadratic programming, nonlinear complementarity, minimax problems, multiplicative programming, Lipschitz optimization, fractional programming, network problems, trajectory methods, homotopy methods, interval methods, and stochastic approaches. The Handbook of Global Optimization is addressed to researchers in mathematical programming, as well as all scientists who use optimization methods to model and solve problems.
The enormous practical need for solving global optimization problems coupled with a rapidly advancing computer technology has allowed one to consider problems which a few years ago would have been considered computationally intractable. As a consequence, we are seeing the creation of a large and increasing number of diverse algorithms for solving a wide variety of multiextremal global optimization problems. The goal of this book is to systematically clarify and unify these diverse approaches in order to provide insight into the underlying concepts and their pro perties. Aside from a coherent view of the field much new material is presented. By definition, a multiextremal global optimization problem seeks at least one global minimizer of a real-valued objective function that possesses different local n minimizers. The feasible set of points in IR is usually determined by a system of inequalities. It is well known that in practically all disciplines where mathematical models are used there are many real-world problems which can be formulated as multi extremal global optimization problems.
This self-contained monograph presents a new stochastic approach to global optimization problems arising in a variety of disciplines including mathematics, operations research, engineering, and economics. The volume deals with constrained and unconstrained problems and puts a special emphasis on large scale problems. It also introduces a new unified concept for unconstrained, constrained, vector, and stochastic global optimization problems. All methods presented are illustrated by various examples. Practical numerical algorithms are given and analyzed in detail. The topics presented include the randomized curve of steepest descent, the randomized curve of dominated points, the semi-implicit Euler method, the penalty approach, and active set strategies. The optimal decoding of block codes in digital communications is worked out as a case study and shows the potential and high practical relevance of this new approach. Global Optimization: A Stochastic Approach is an elegant account of a refined theory, suitable for researchers and graduate students interested in global optimization and its applications.
Optimization problems abound in most fields of science, engineering, and tech nology. In many of these problems it is necessary to compute the global optimum (or a good approximation) of a multivariable function. The variables that define the function to be optimized can be continuous and/or discrete and, in addition, many times satisfy certain constraints. Global optimization problems belong to the complexity class of NP-hard prob lems. Such problems are very difficult to solve. Traditional descent optimization algorithms based on local information are not adequate for solving these problems. In most cases of practical interest the number of local optima increases, on the aver age, exponentially with the size of the problem (number of variables). Furthermore, most of the traditional approaches fail to escape from a local optimum in order to continue the search for the global solution. Global optimization has received a lot of attention in the past ten years, due to the success of new algorithms for solving large classes of problems from diverse areas such as engineering design and control, computational chemistry and biology, structural optimization, computer science, operations research, and economics. This book contains refereed invited papers presented at the conference on "State of the Art in Global Optimization: Computational Methods and Applications" held at Princeton University, April 28-30, 1995. The conference presented current re search on global optimization and related applications in science and engineering. The papers included in this book cover a wide spectrum of approaches for solving global optimization problems and applications.
In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.