Download Free Integral Geometry And Inverse Problems For Hyperbolic Equations Book in PDF and EPUB Free Download. You can read online Integral Geometry And Inverse Problems For Hyperbolic Equations and write the review.

There are currently many practical situations in which one wishes to determine the coefficients in an ordinary or partial differential equation from known functionals of its solution. These are often called "inverse problems of mathematical physics" and may be contrasted with problems in which an equation is given and one looks for its solution under initial and boundary conditions. Although inverse problems are often ill-posed in the classical sense, their practical importance is such that they may be considered among the pressing problems of current mathematical re search. A. N. Tihonov showed [82], [83] that there is a broad class of inverse problems for which a particular non-classical definition of well-posed ness is appropriate. This new definition requires that a solution be unique in a class of solutions belonging to a given subset M of a function space. The existence of a solution in this set is assumed a priori for some set of data. The classical requirement of continuous dependence of the solution on the data is retained but it is interpreted differently. It is required that solutions depend continuously only on that data which does not take the solutions out of M.
In this monograph a method for proving the solvability of integral geometry problems and inverse problems for kinetic equations is presented. The application of this method has led to interesting problems of the Dirichlet type for third order differential equations, the solvability of which appears to depend on the geometry of the domain for which the problem is stated. Another considered subject is the problem of integral geometry on paraboloids, in particular the uniqueness of solutions to the Goursat problem for a differential inequality, which implies new theorems on the uniqueness of solutions to this problem for a class of quasilinear hyperbolic equations. A class of multidimensional inverse problems associated with problems of integral geometry and the inverse problem for the quantum kinetic equations are also included.
Elucidates the fundamental mathematical structures of inverse problems, analyzing both the information content and the solution of some inverse problems in which the information content of the coefficients and the source term of a given differential equation is not too large. In order to be accessib
A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.
Contains the proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Integral Geometry and Tomography, held in June 1989 at Humboldt State University in Arcata, California. This book features articles that range over such diverse areas as combinatorics, geometric inequalities, micro-local analysis, group theory, and harmonic analysis.
Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems is the first book in which two new concepts of numerical solutions of multidimensional Coefficient Inverse Problems (CIPs) for a hyperbolic Partial Differential Equation (PDE) are presented: Approximate Global Convergence and the Adaptive Finite Element Method (adaptivity for brevity). Two central questions for CIPs are addressed: How to obtain a good approximations for the exact solution without any knowledge of a small neighborhood of this solution, and how to refine it given the approximation. The book also combines analytical convergence results with recipes for various numerical implementations of developed algorithms. The developed technique is applied to two types of blind experimental data, which are collected both in a laboratory and in the field. The result for the blind backscattering experimental data collected in the field addresses a real world problem of imaging of shallow explosives.
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book's primary focus.