Download Free Integer Programming Approaches To Risk Averse Optimization Book in PDF and EPUB Free Download. You can read online Integer Programming Approaches To Risk Averse Optimization and write the review.

This book presents solutions to the general problem of single period portfolio optimization. It introduces different linear models, arising from different performance measures, and the mixed integer linear models resulting from the introduction of real features. Other linear models, such as models for portfolio rebalancing and index tracking, are also covered. The book discusses computational issues and provides a theoretical framework, including the concepts of risk-averse preferences, stochastic dominance and coherent risk measures. The material is presented in a style that requires no background in finance or in portfolio optimization; some experience in linear and mixed integer models, however, is required. The book is thoroughly didactic, supplementing the concepts with comments and illustrative examples.
This book constitutes the refereed proceedings of the 17th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2014, held in Bonn, Germany, in June 2014. The 34 full papers presented were carefully reviewed and selected from 143 submissions. The conference is a forum for researchers and practitioners working on various aspects of integer programming and combinatorial optimization. The aim is to present recent developments in theory, computation, and applications in these areas. The scope of IPCO is viewed in a broad sense, to include algorithmic and structural results in integer programming and combinatorial optimization as well as revealing computational studies and novel applications of discrete optimization to practical problems.
This volume presents a collection of contributions dedicated to applied problems in the financial and energy sectors that have been formulated and solved in a stochastic optimization framework. The invited authors represent a group of scientists and practitioners, who cooperated in recent years to facilitate the growing penetration of stochastic programming techniques in real-world applications, inducing a significant advance over a large spectrum of complex decision problems. After the recent widespread liberalization of the energy sector in Europe and the unprecedented growth of energy prices in international commodity markets, we have witnessed a significant convergence of strategic decision problems in the energy and financial sectors. This has often resulted in common open issues and has induced a remarkable effort by the industrial and scientific communities to facilitate the adoption of advanced analytical and decision tools. The main concerns of the financial community over the last decade have suddenly penetrated the energy sector inducing a remarkable scientific and practical effort to address previously unforeseeable management problems. Stochastic Optimization Methods in Finance and Energy: New Financial Products and Energy Markets Strategies aims to include in a unified framework for the first time an extensive set of contributions related to real-world applied problems in finance and energy, leading to a common methodological approach and in many cases having similar underlying economic and financial implications. Part 1 of the book presents 6 chapters related to financial applications; Part 2 presents 7 chapters on energy applications; and Part 3 presents 5 chapters devoted to specific theoretical and computational issues.
Researchers and practitioners in computer science, optimization, operations research and mathematics will find this book useful as it illustrates optimization models and solution methods in discrete, non-differentiable, stochastic, and nonlinear optimization. Contributions from experts in optimization are showcased in this book showcase a broad range of applications and topics detailed in this volume, including pattern and image recognition, computer vision, robust network design, and process control in nonlinear distributed systems. This book is dedicated to the 80th birthday of Ivan V. Sergienko, who is a member of the National Academy of Sciences (NAS) of Ukraine and the director of the V.M. Glushkov Institute of Cybernetics. His work has had a significant impact on several theoretical and applied aspects of discrete optimization, computational mathematics, systems analysis and mathematical modeling.
Optimization models play an increasingly important role in financial decisions. This is the first textbook devoted to explaining how recent advances in optimization models, methods and software can be applied to solve problems in computational finance more efficiently and accurately. Chapters discussing the theory and efficient solution methods for all major classes of optimization problems alternate with chapters illustrating their use in modeling problems of mathematical finance. The reader is guided through topics such as volatility estimation, portfolio optimization problems and constructing an index fund, using techniques such as nonlinear optimization models, quadratic programming formulations and integer programming models respectively. The book is based on Master's courses in financial engineering and comes with worked examples, exercises and case studies. It will be welcomed by applied mathematicians, operational researchers and others who work in mathematical and computational finance and who are seeking a text for self-learning or for use with courses.
This volume collects peer-reviewed short papers presented at the Optimization and Decision Science conference (ODS 2022) held in Florence (Italy) from August 30th to September 2nd, 2022, organized by the Global Optimization Laboratory within the University of Florence and AIRO (the Italian Association for Operations Research). The book includes contributions in the fields of operations research, optimization, problem solving, decision making and their applications in the most diverse domains. Moreover, a special focus is set on the challenging theme Operations Research: inclusion and equity. The work offers 30 contributions, covering a wide spectrum of methodologies and applications. Specifically, they feature the following topics: (i) Variational Inequalities, Equilibria and Games, (ii) Optimization and Machine Learning, (iii) Global Optimization, (iv) Optimization under Uncertainty, (v) Combinatorial Optimization, (vi) Transportation and Mobility, (vii) Health Care Management, and (viii) Applications. This book is primarily addressed to researchers and PhD students of the operations research community. However, due to its interdisciplinary content, it will be of high interest for other closely related research communities.
This book covers many hot topics, including theoretical and practical research in many areas such as dynamic analysis, machine learning, supply chain management, operations management, environmental management, uncertainty, and health and hygiene. It showcases advanced management concepts and innovative ideas. The 16th International Conference on Management Science and Engineering Management (2022 ICMSEM) will be held in Ankara, Turkey, during August 3-6, 2022. ICMSEM has always been committed to promoting innovation management science (M-S) and engineering management (EM) academic research and development. The book provides researchers and practitioners in the field of Management Science and Engineering Management (MSEM) with the latest, cutting-edge thinking and research in the field. It will appeal to readers interested in these fields, especially those looking for new ideas and research directions.
This book deals with stochastic combinatorial optimization problems in supply chain disruption management, with a particular focus on management of disrupted flows in customer-driven supply chains. The problems are modeled using a scenario based stochastic mixed integer programming to address risk-neutral, risk-averse and mean-risk decision-making in the presence of supply chain disruption risks. The book focuses on innovative, computationally efficient portfolio approaches to supply chain disruption management, e.g., selection of primary and recovery supply portfolios, demand portfolios, capacity portfolios, etc. Numerous computational examples throughout the book, modeled in part on real-world supply chain disruption management problems, illustrate the material presented and provide managerial insights. In the computational examples, the proposed mathematical programming models are solved using an advanced algebraic modeling language such as AMPL and CPLEX, GUROBI and XPRESS solvers. The knowledge and tools provided in the book allow the reader to model and solve supply chain disruption management problems using commercially available software for mixed integer programming. Using the end-of chapter problems and exercises, the monograph can also be used as a textbook for an advanced course in supply chain risk management. After an introductory chapter, the book is then divided into five main parts. Part I addresses selection of a supply portfolio; Part II considers integrated selection of supply portfolio and scheduling; Part III looks at integrated, equitably efficient selection of supply portfolio and scheduling; Part IV examines integrated selection of primary and recovery supply (and demand) portfolios and scheduling; and Part V addresses disruption management of information flows in supply chains.