Download Free Integer Programming Approaches For Semicontinuous And Stochastic Optimization Book in PDF and EPUB Free Download. You can read online Integer Programming Approaches For Semicontinuous And Stochastic Optimization and write the review.

Optimization problems arising in practice usually contain several random parameters. Hence, in order to obtain optimal solutions being robust with respect to random parameter variations, the mostly available statistical information about the random parameters should be considered already at the planning phase. The original problem with random parameters must be replaced by an appropriate deterministic substitute problem, and efficient numerical solution or approximation techniques have to be developed for those problems. This proceedings volume contains a selection of papers on modelling techniques, approximation methods, numerical solution procedures for stochastic optimization problems and applications to the reliability-based optimization of concrete technical or economic systems.
Computer Science and Operations Research continue to have a synergistic relationship and this book - as a part of the Operations Research and Computer Science Interface Series - sits squarely in the center of the confluence of these two technical research communities. The research presented in the volume is evidence of the expanding frontiers of these two intersecting disciplines and provides researchers and practitioners with new work in the areas of logic programming, stochastic optimization, heuristic search and post-solution analysis for integer programs. The chapter topics span the spectrum of application level. Some of the chapters are highly applied and others represent work in which the application potential is only beginning. In addition, each chapter contains expository material and reviews of the literature designed to enhance the participation of the reader in this expanding interface.
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".
This volume includes a selection of refereed papers presented at the GAMM/IFIP-Workshop on "Stochastic Optimization: Numerical Methods and Technical Applications", held at the Federal Armed Forces University Munich, May 29 - 31, 1990. The objective of this meeting was to bring together scientists from Stochastic Programming and from those Engineering areas, where Mathematical Programming models are common tools, as e. g. Optimal Structural Design, Power Dispatch, Acid Rain Management etc. The first, theoretical part includes the papers by S. D. Flam. H. Niederreiter, E. Poechinger and R. Schultz. The second part on methods and applications contains the articles by N. Baba, N. Grwe and W. Roemisch, J. Mayer, E. A. Mc Bean and A. Vasarhelyi.
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.
This book constitutes the refereed proceedings of the 10th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2004, held in New York City, USA in June 2004. The 32 revised papers presented were carefully reviewed and selected from 109 submissions. Among the topics addressed are vehicle routing, network management, mixed-integer programming, computational complexity, game theory, supply chain management, stochastic optimization problems, production scheduling, graph computations, computational graph theory, separation algorithms, local search, linear optimization, integer programming, graph coloring, packing, combinatorial optimization, routing, flow algorithms, 0/1 polytopes, and polyhedra.
The enormous practical need for solving global optimization problems coupled with a rapidly advancing computer technology has allowed one to consider problems which a few years ago would have been considered computationally intractable. As a consequence, we are seeing the creation of a large and increasing number of diverse algorithms for solving a wide variety of multiextremal global optimization problems. The goal of this book is to systematically clarify and unify these diverse approaches in order to provide insight into the underlying concepts and their pro perties. Aside from a coherent view of the field much new material is presented. By definition, a multiextremal global optimization problem seeks at least one global minimizer of a real-valued objective function that possesses different local n minimizers. The feasible set of points in IR is usually determined by a system of inequalities. It is well known that in practically all disciplines where mathematical models are used there are many real-world problems which can be formulated as multi extremal global optimization problems.
The author presents two concepts to handle the classic linear mixed-integer two-stage stochastic optimization problem. She describes mean-risk modeling and stochastic programming with first order dominance constraints. Both approaches are applied to optimize the operation of a dispersed generation system.
This book provides an essential introduction to Stochastic Programming, especially intended for graduate students. The book begins by exploring a linear programming problem with random parameters, representing a decision problem under uncertainty. Several models for this problem are presented, including the main ones used in Stochastic Programming: recourse models and chance constraint models. The book not only discusses the theoretical properties of these models and algorithms for solving them, but also explains the intrinsic differences between the models. In the book’s closing section, several case studies are presented, helping students apply the theory covered to practical problems. The book is based on lecture notes developed for an Econometrics and Operations Research course for master students at the University of Groningen, the Netherlands - the longest-standing Stochastic Programming course worldwide.