Download Free Integer Flows And Cycle Covers Of Graphs Book in PDF and EPUB Free Download. You can read online Integer Flows And Cycle Covers Of Graphs and write the review.

Focuses on classical problems in graph theory, including the 5-flow conjectures, the edge-3-colouring conjecture, the 3-flow conjecture and the cycle double cover conjecture. The text highlights the interrelationships between graph colouring, integer flow, cycle covers and graph minors. It also concentrates on graph theoretical methods and results.
The famous Circuit Double Cover conjecture (and its numerous variants) is considered one of the major open problems in graph theory owing to its close relationship with topological graph theory, integer flow theory, graph coloring and the structure of snarks. It is easy to state: every 2-connected graph has a family of circuits covering every edge precisely twice. C.-Q. Zhang provides an up-to-date overview of the subject containing all of the techniques, methods and results developed to help solve the conjecture since the first publication of the subject in the 1940s. It is a useful survey for researchers already working on the problem and a fitting introduction for those just entering the field. The end-of-chapter exercises have been designed to challenge readers at every level and hints are provided in an appendix.
Graph Theory (as a recognized discipline) is a relative newcomer to Mathematics. The first formal paper is found in the work of Leonhard Euler in 1736. In recent years the subject has grown so rapidly that in today's literature, graph theory papers abound with new mathematical developments and significant applications.As with any academic field, it is good to step back occasionally and ask Where is all this activity taking us?, What are the outstanding fundamental problems?, What are the next important steps to take?. In short, Quo Vadis, Graph Theory?. The contributors to this volume have together provided a comprehensive reference source for future directions and open questions in the field.
From the reviews: "About 30 years ago, when I was a student, the first book on combinatorial optimization came out referred to as "the Lawler" simply. I think that now, with this volume Springer has landed a coup: "The Schrijver". The box is offered for less than 90.- EURO, which to my opinion is one of the best deals after the introduction of this currency." OR-Spectrum
This volume contains the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Graph Minors, held at the University of Washington in Seattle in the summer of 1991. Among the topics covered are: algorithms on tree-structured graphs, well-quasi-ordering, logic, infinite graphs, disjoint path problems, surface embeddings, knot theory, graph polynomials, matroid theory, and combinatorial optimization.
Chromatic graph theory is a thriving area that uses various ideas of 'colouring' (of vertices, edges, and so on) to explore aspects of graph theory. It has links with other areas of mathematics, including topology, algebra and geometry, and is increasingly used in such areas as computer networks, where colouring algorithms form an important feature. While other books cover portions of the material, no other title has such a wide scope as this one, in which acknowledged international experts in the field provide a broad survey of the subject. All fifteen chapters have been carefully edited, with uniform notation and terminology applied throughout. Bjarne Toft (Odense, Denmark), widely recognized for his substantial contributions to the area, acted as academic consultant. The book serves as a valuable reference for researchers and graduate students in graph theory and combinatorics and as a useful introduction to the topic for mathematicians in related fields.
This volume contains selected papers presented at the Summer School and International Conference on Combinatorics. The topics include Combinatorial Algorithms, Combinatorial Geometry, Combinatorial Optimization, Combinatorial Matrix Theory, Hypergraph and others.
This book constitutes the refereed proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer Science, STACS 2005, held in Stuttgart, Germany in February 2005. The 54 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 217 submissions. A broad variety of topics from theoretical computer science are addressed, in particular complexity theory, algorithmics, computational discrete mathematics, automata theory, combinatorial optimization and approximation, networking and graph theory, computational geometry, grammar systems and formal languages, etc.
This is the first in a series of volumes, which provide an extensive overview of conjectures and open problems in graph theory. The readership of each volume is geared toward graduate students who may be searching for research ideas. However, the well-established mathematician will find the overall exposition engaging and enlightening. Each chapter, presented in a story-telling style, includes more than a simple collection of results on a particular topic. Each contribution conveys the history, evolution, and techniques used to solve the authors’ favorite conjectures and open problems, enhancing the reader’s overall comprehension and enthusiasm. The editors were inspired to create these volumes by the popular and well attended special sessions, entitled “My Favorite Graph Theory Conjectures," which were held at the winter AMS/MAA Joint Meeting in Boston (January, 2012), the SIAM Conference on Discrete Mathematics in Halifax (June,2012) and the winter AMS/MAA Joint meeting in Baltimore(January, 2014). In an effort to aid in the creation and dissemination of open problems, which is crucial to the growth and development of a field, the editors requested the speakers, as well as notable experts in graph theory, to contribute to these volumes.
In the tradition of EuroComb'01 (Barcelona), Eurocomb'03 (Prague), EuroComb'05 (Berlin), Eurocomb'07 (Seville), Eurocomb'09 (Bordeaux), and Eurocomb'11 (Budapest), this volume covers recent advances in combinatorics and graph theory including applications in other areas of mathematics, computer science and engineering. Topics include, but are not limited to: Algebraic combinatorics, combinatorial geometry, combinatorial number theory, combinatorial optimization, designs and configurations, enumerative combinatorics, extremal combinatorics, ordered sets, random methods, topological combinatorics.