Download Free Insurance Decision Making For Rare Events Book in PDF and EPUB Free Download. You can read online Insurance Decision Making For Rare Events and write the review.

Many Americans believe that people who lack health insurance somehow get the care they really need. Care Without Coverage examines the real consequences for adults who lack health insurance. The study presents findings in the areas of prevention and screening, cancer, chronic illness, hospital-based care, and general health status. The committee looked at the consequences of being uninsured for people suffering from cancer, diabetes, HIV infection and AIDS, heart and kidney disease, mental illness, traumatic injuries, and heart attacks. It focused on the roughly 30 million-one in seven-working-age Americans without health insurance. This group does not include the population over 65 that is covered by Medicare or the nearly 10 million children who are uninsured in this country. The main findings of the report are that working-age Americans without health insurance are more likely to receive too little medical care and receive it too late; be sicker and die sooner; and receive poorer care when they are in the hospital, even for acute situations like a motor vehicle crash.
Human decision making involves problems which are being studied with increasing interest and sophistication. They range from controversial political decisions via individual consumer decisions to such simple tasks as signal discriminations. Although it would seem that decisions have to do with choices among available actions of any kind, there is general agreement that decision making research should pertain to choice prob lems which cannot be solved without a predecisional stage of finding choice alternatives, weighing evidence, and judging values. The ultimate objective of scientific research on decision making is two-fold: (a) to develop a theoretically sound technology for the optimal solution of decision problems, and (b) to formulate a descriptive theory of human decision making. The latter may, in tum, protect decision makers from being caught in the traps of their own limitations and biases. Recently, in decision making research the strong emphasis on well defined laboratory tasks is decreasing in favour of more realistic studies in various practical settings. This may well have been caused by a growing awareness of the fact that decision-behaviour is strongly determined by situational factors, which makes it necessary to look into processes of interaction between the decision maker and the relevant task environ ment. Almost inevitably there is a parallel shift of interest towards problems of utility measurement and the evaluation of consequences.
Considerable evidence suggests that many people for whom insurance is worth purchasing do not have coverage and others who appear not to need financial protection against certain events actually have purchased coverage. There are certain types of events for which one might expect to see insurance widely marketed are now viewed today by insurers as uninsurable and there are other policies one might not expect to be successfully marketed that exist on a relatively large scale. In addition, evidence suggests that cost-effective preventive measures are sometimes rewarded by insurers in ways that could change their clients' behavior. These examples reveal that insurance purchasing and marketing activities do not always produce results that are in the best interest of individuals at risk. Insurance Decision Making and Market Behavior discusses such behavior with the intent of categorizing these insurance "anomalies". It represents a first step in constructing a theory of insurance decision making to explain behavior that does not conform to standard economic models of choice and decision-making. Finally, the authors propose a set of prescriptive solutions for improving insurance decision-making.
Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Evaluating the myriad dimensions of how disasters can affect economic activity and decision-making, this cutting-edge Handbook presents a timely analysis of the conditions that reduce or exacerbate disaster impacts. Addressing developments in research on disaster economics, internationally recognized scholars combine theoretical considerations with empirical methods to expand and improve the field of disaster mitigation.
Getting the right diagnosis is a key aspect of health care - it provides an explanation of a patient's health problem and informs subsequent health care decisions. The diagnostic process is a complex, collaborative activity that involves clinical reasoning and information gathering to determine a patient's health problem. According to Improving Diagnosis in Health Care, diagnostic errors-inaccurate or delayed diagnoses-persist throughout all settings of care and continue to harm an unacceptable number of patients. It is likely that most people will experience at least one diagnostic error in their lifetime, sometimes with devastating consequences. Diagnostic errors may cause harm to patients by preventing or delaying appropriate treatment, providing unnecessary or harmful treatment, or resulting in psychological or financial repercussions. The committee concluded that improving the diagnostic process is not only possible, but also represents a moral, professional, and public health imperative. Improving Diagnosis in Health Care, a continuation of the landmark Institute of Medicine reports To Err Is Human (2000) and Crossing the Quality Chasm (2001), finds that diagnosis-and, in particular, the occurrence of diagnostic errorsâ€"has been largely unappreciated in efforts to improve the quality and safety of health care. Without a dedicated focus on improving diagnosis, diagnostic errors will likely worsen as the delivery of health care and the diagnostic process continue to increase in complexity. Just as the diagnostic process is a collaborative activity, improving diagnosis will require collaboration and a widespread commitment to change among health care professionals, health care organizations, patients and their families, researchers, and policy makers. The recommendations of Improving Diagnosis in Health Care contribute to the growing momentum for change in this crucial area of health care quality and safety.
This book examines the behavior of individuals at risk and insurance industry policy makers involved in selling, buying and regulation.