Download Free Inside Epa Weekly Report Book in PDF and EPUB Free Download. You can read online Inside Epa Weekly Report and write the review.

Sustainability is based on a simple and long-recognized factual premise: Everything that humans require for their survival and well-being depends, directly or indirectly, on the natural environment. The environment provides the air we breathe, the water we drink, and the food we eat. Recognizing the importance of sustainability to its work, the U.S. Environmental Protection Agency (EPA) has been working to create programs and applications in a variety of areas to better incorporate sustainability into decision-making at the agency. To further strengthen the scientific basis for sustainability as it applies to human health and environmental protection, the EPA asked the National Research Council (NRC) to provide a framework for incorporating sustainability into the EPA's principles and decision-making. This framework, Sustainability and the U.S. EPA, provides recommendations for a sustainability approach that both incorporates and goes beyond an approach based on assessing and managing the risks posed by pollutants that has largely shaped environmental policy since the 1980s. Although risk-based methods have led to many successes and remain important tools, the report concludes that they are not adequate to address many of the complex problems that put current and future generations at risk, such as depletion of natural resources, climate change, and loss of biodiversity. Moreover, sophisticated tools are increasingly available to address cross-cutting, complex, and challenging issues that go beyond risk management. The report recommends that EPA formally adopt as its sustainability paradigm the widely used "three pillars" approach, which means considering the environmental, social, and economic impacts of an action or decision. Health should be expressly included in the "social" pillar. EPA should also articulate its vision for sustainability and develop a set of sustainability principles that would underlie all agency policies and programs.
The rapid conversion of land to urban and suburban areas has profoundly altered how water flows during and following storm events, putting higher volumes of water and more pollutants into the nation's rivers, lakes, and estuaries. These changes have degraded water quality and habitat in virtually every urban stream system. The Clean Water Act regulatory framework for addressing sewage and industrial wastes is not well suited to the more difficult problem of stormwater discharges. This book calls for an entirely new permitting structure that would put authority and accountability for stormwater discharges at the municipal level. A number of additional actions, such as conserving natural areas, reducing hard surface cover (e.g., roads and parking lots), and retrofitting urban areas with features that hold and treat stormwater, are recommended.
Forever Chemicals: Environmental, Economic, and Social Equity Concerns with PFAS in the Environment provides the reader with an understanding of the complex and interwoven issues associated with per- and polyfluorinated substances (PFAS) in our environment. The chapters provide in-depth perspective into various issues, including health, regulation, detection, clean-up strategies and technologies, and more. Taken together or as the reader’s interests lead them, the variety of topics covered in the book present a balanced perspective on this complex topic. It will address the current state of PFAS and where indicators are pointing for future developments. The book is also a deeper investigation of the regulatory challenges, analytical hurdles, and toxicological progress to date for the suite of PFAS chemicals. Features Explains the trends that will affect future policy and regulatory decisions Looks holistically at 4000+ PFAS chemicals Includes PFAS risk assessments at contaminated sites and biomonitoring insights Provides in-depth discussions on remediation technologies Illustrates quality and diversified content Provides a balanced perspective on this complex topic
Having safe drinking water is important to all Americans. The Environmental Protection Agency's decision in the summer of 2001 to delay implementing a new, more stringent standard for the maximum allowable level for arsenic in drinking water generated a great deal of criticism and controversy. Ultimately at issue were newer data on arsenic beyond those that had been examined in a 1999 National Research Council report. EPA asked the National Research Council for an evaluation of the new data available. The committee's analyses and conclusions are presented in Arsenic in Drinking Water: 2001 Update. New epidemiological studies are critically evaluated, as are new experimental data that provide information on how and at what level arsenic in drinking water can lead to cancer. The report's findings are consistent with those of the 1999 report that found high risks of cancer at the previous federal standard of 50 parts per billion. In fact, the new report concludes that men and women who consume water containing 3 parts per billion of arsenic daily have about a 1 in 1,000 increased risk of developing bladder or lung cancer during their lifetime.
The safety of the nation's drinking water must be maintained to ensure the health of the public. The U.S. Environmental Protection Agency (EPA) is responsible for regulating the levels of substances in the drinking water supply. Copper can leach into drinking water from the pipes in the distribution system, and the allowable levels are regulated by the EPA. The regulation of copper, however, is complicated by the fact that it is both necessary to the normal functioning of the body and toxic to the body at too high a level. The National Research Council was requested to form a committee to review the scientific validity of the EPA's maximum contaminant level goal for copper in drinking water. Copper in Drinking Water outlines the findings of the committee's review. The book provides a review of the toxicity of copper as well as a discussion of the essential nature of this metal. The risks posed by both short-term and long-term exposure to copper are characterized, and the implications for public health are discussed. This book is a valuable reference for individuals involved in the regulation of water supplies and individuals interested in issues surrounding this metal.
Most people associate fluoride with the practice of intentionally adding fluoride to public drinking water supplies for the prevention of tooth decay. However, fluoride can also enter public water systems from natural sources, including runoff from the weathering of fluoride-containing rocks and soils and leaching from soil into groundwater. Fluoride pollution from various industrial emissions can also contaminate water supplies. In a few areas of the United States fluoride concentrations in water are much higher than normal, mostly from natural sources. Fluoride is one of the drinking water contaminants regulated by the U.S. Environmental Protection Agency (EPA) because it can occur at these toxic levels. In 1986, the EPA established a maximum allowable concentration for fluoride in drinking water of 4 milligrams per liter, a guideline designed to prevent the public from being exposed to harmful levels of fluoride. Fluoride in Drinking Water reviews research on various health effects from exposure to fluoride, including studies conducted in the last 10 years.
This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic fracturing water cycle and their potential to impact drinking water resources. The stages include: (1) acquiring water to be used for hydraulic fracturing (Water Acquisition), (2) mixing the water with chemical additives to prepare hydraulic fracturing fluids (Chemical Mixing), (3) injecting the hydraulic fracturing fluids into the production well to create fractures in the targeted production zone (Well Injection), (4) collecting the wastewater that returns through the well after injection (Produced Water Handling), and (5) managing the wastewater via disposal or reuse methods (Wastewater Disposal and Reuse). EPA found scientific evidence that hydraulic fracturing activities can impact drinking water resources under some circumstances. The report identifies certain conditions under which impacts from hydraulic fracturing activities can be more frequent or severe.