Download Free Insect Resistant Maize Book in PDF and EPUB Free Download. You can read online Insect Resistant Maize and write the review.

Insect pests remain one of the main constraints to food and fiber production worldwide despite farmers deploying a range of techniques to protect their crops. Modern pest control is guided by the principles of integrated pest management (IPM) with pest resistant germplasm being an important part of the foundation. Since 1996, when the first genetically modified (GM) insect-resistant maize variety was commercialized in the USA, the area planted to insect-resistant GM varieties has grown dramatically, representing the fastest adoption rate of any agricultural technology in human history. The goal of our book is to provide an overview on the role insect-resistant GM plants play in different crop systems worldwide. We hope that the book will contribute to a more rational debate about the role GM crops can play in IPM for food and fiber production.
This book reviews and synthesizes the recent advances in exploiting host plant resistance to insects, highlighting the role of molecular techniques in breeding insect resistant crops. It also provides an overview of the fascinating field of insect-plant relationships, which is fundamental to the study of host-plant resistance to insects. Further, it discusses the conventional and molecular techniques utilized/useful in breeding for resistance to insect-pests including back-cross breeding, modified population improvement methods for insect resistance, marker-assisted backcrossing to expedite the breeding process, identification and validation of new insect-resistance genes and their potential for utilization, genomics, metabolomics, transgenesis and RNAi. Lastly, it analyzes the successes, limitations and prospects for the development of insect-resistant cultivars of rice, maize, sorghum and millet, cotton, rapeseed, legumes and fruit crops, and highlights strategies for management of insect biotypes that limit the success and durability of insect-resistant cultivators in the field. Arthropod pests act as major constraints in the agro-ecosystem. It has been estimated that arthropod pests may be destroying around one-fifth of the global agricultural production/potential production every year. Further, the losses are considerably higher in the developing tropics of Asia and Africa, which are already battling severe food shortage. Integrated pest management (IPM) has emerged as the dominant paradigm for minimizing damage by the insects and non-insect pests over the last 50 years. Pest resistant cultivars represent one of the most environmentally benign, economically viable and ecologically sustainable options for utilization in IPM programs. Hundreds of insect-resistant cultivars of rice, wheat, maize, sorghum, cotton, sugarcane and other crops have been developed worldwide and are extensively grown for increasing and/or stabilizing crop productivity. The annual economic value of arthropod resistance genes developed in global agriculture has been estimated to be greater than US$ 2 billion Despite the impressive achievements and even greater potential in minimizing pest- related losses, only a handful of books have been published on the topic of host-plant resistance to insects. This book fills this wide gap in the literature on breeding insect- resistant crops. It is aimed at plant breeders, entomologists, plant biotechnologists and IPM experts, as well as those working on sustainable agriculture and food security.
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
Gathering some 90 entries from the Encyclopedia of Sustainability Science and Technology, this book covers animal breeding and genetics for food, crop science and technology, ocean farming and sustainable aquaculture, transgenic livestock for food and more.
This volume reviews current developments in integrated pest management (IPM), focussing on insect pests. It discusses advances in understanding species and landscape ecology on which IPM is founded, as well as advances in cultural, physical and biological methods of control. The first part of the book reviews current developments in understanding insect species, community and agroecosystems ecology. This understanding provides the foundation for developing effective IPM programmes which work with ecosystems to keep pests from reaching damaging levels. Parts 2 and 3 then review advances in cultural, physical and, in particular, biological methods of control. Chapters cover developments in classical, conservation and augmentative biological control as well as the use of entomopathogenic fungi, viruses, nematodes and semiochemicals. The final parts of the book summarise current research on monitoring pesticide use as well as emerging classes of biopesticides. Edited by pioneers in IPM techniques, and including contributions from some of most eminent experts in the field, this will be a standard reference for the IPM research community, crop scientists, entomologists, companies involved in pesticides and crop pest management as well as government agencies monitoring and regulating pest management in agriculture.
Written in a practical, didactic format designed to deliver point-of-care information to practitioners of cardiology as well as assist non-cardiologists with the efficient management of cardiac disease, this highly illustrated manual is an essential reference.
Written in easy to follow language, the book presents cutting-edge agriculturally relevant plant biotechnologies and applications in a manner that is accessible to all. This book introduces the scope and method of plant biotechnologies and molecular breeding within the context of environmental analysis and assessment, a diminishing supply of productive arable land, scarce water resources and climate change. Authors who have studied how agro ecosystems have changed during the first decade and a half of commercial deployment review effects and stress needs that must be considered to make these tools sustainable.