Download Free Insect Nicotinic Acetylcholine Receptors Book in PDF and EPUB Free Download. You can read online Insect Nicotinic Acetylcholine Receptors and write the review.

The aim of this book is to summarize our understanding on the insect nicotinic acetylcholine receptors. This area of research received great impetus from the identification of the first subunit sequences to be used as neonicotinoid insecticide target sites. Although a book of this nature can provide the details only of commonly published results, it is hoped that it may provide a useful guide to the newcomer to the field as well as to point out some of the future challenges. For example, we need to determine the precise subunit nomenclature of insect nicotinic receptors. This nomenclature varies amongst species and this led to some of the early confusion that persists. We need to be precise in identifying the subunit composition of native insect nicotinic receptor subtypes, their functional properties and physiological roles.
The nicotinoids are the most important new class of pesticides, joining the organophosphorus compounds, methylcarbamates, and pyrethroids as the major insecticides. Recently, imidacloprid and related nicotinoids have begun replacing organophosphorus and methylcarbamate compounds as insecticides to control insect pests on major crops. Nicotinoids act on the nicotinic acetylcholine receptor, as does naturally occurring nicotine, but with remarkable effectiveness against insects while being safe for mammals; they are quickly degraded and do not persist in the environment. This volume describes the relationship of nicotinoids to botanical insecticidal alkaloids, their discovery and development as insecticides, and the prospects for their expanded use and for the development of resistance. This book is the first to provide concise, comprehensive information on nicotinoids, their chemistry, mode of action, metabolism, and application in agriculture.
In recent years many of the conventional methods of insect control by broad spectrum synthetic chemicals have come under scrutiny because of their unde sirable effects on human health and the environment. In addition, some classes of pesticide chemistry, which generated resistance problems and severely affected the environment, are no longer used. It is against this background that the authors of this book present up-to-date findings-relating to biochemical sites that can serve as targets for developing insecticides with selective prop erties, and as the basis for the elucidation of resistance mechanisms and countermeasures. The book consists of eight chapters relating to biochemical targets for insec ticide action and seven chapters relating to biochemical modes of resistance and countermeasures. The authors of the chapters are world leaders in pesti cide chemistry, biochemical modes of action and mechanisms of resistance. Biochemical sites such as chitin formation, juvenile hormone and ecdysone receptors, acetylcholine and GABA receptors, ion channels, and neuropeptides are potential targets for insecticide action. The progress made in recent years in molecular biology (presented in depth in this volume) has led to the iden tification of genes that confer mechanisms of resistance, such as increased detoxification, decreased penetration and insensitive target sites. A combina tion of factors can lead to potentiation of the resistance level. Classifications of these mechanisms are termed gene amplification, changes in structural genes, and modification of gene expression.
The future of insect control looked very bright in the 1950s and 1960s with new insecticides constantly coming onto the market. Today, however, whole classes of pesticide chemistry have fallen by the wayside due to misuse which generated resistance problems reaching crisis proportions, severe adverse effects on the environment, and public outcry that has led to increasingly stricter regulation and legislation. It is with this background, demanding the need for safer, environmentally friendly pesticides and new strategies to reduce resistance problems, that this book was written. The authors of the various chapters have a wealth of experience in pesticide chemistry, biochemical modes of action, mechanism of resistance and application, and have presented concise reviews. Each is actively involved in thedevelopment of new groups of pesticide chemistry which led to the development of novel insecticides with special impact in controlling agricultural pests. Emphasis has been given to insecticides with selective properties, such as insect growth regulators hormone mimics, ecdysone agonists), (chitin synthesis inhibitors, juvenile chloronicotinyl insecticides (imidacloprid, acetamiprid), botanical insecticides (neem, plant oils), pymetrozine, diafenthiuron, pyrrole insecticides, and others. The importance of these compounds, as components in integrated pest management programs and in insecticide resistance management strategies, is discussed. The data presented are essential in establishing new technologies and developing novel groups of compounds which will have impact on our future agricultural practices.
Insects are more similar in structure and physiology to mammals than plants or fungi. Consequently, insecticides are often of greater toxicity to mammals than herbicides. This is particularly the case with neurotoxins. However, some insecticides are targeted at structures or hormonal systems specific to insects (insect growth regulators/chitin synthesis inhibitors) so are less harmful but can still be mildly haematotoxic. There are, therefore, issues specific to insecticides, which do not occur with other pesticides - hence the need for a book specifically on insecticide toxicology in mammals. The book starts with general issues relating to the mammalian toxicity of insecticides, including target/non-target specificity, nomenclature and metabolism of insecticides. It then goes on to discuss specific types of insecticides including: organochlorines; anticholinesterases; pyrethrum and synthetic pyrethroids; nicotine and the neonicotinoids; insect growth regulators/ecdysone agonists/chitin synthesis inhibitors; insecticides of natural origin; biological insecticides; and insecticides used in veterinary medicine.
The chemistry of heterocycles is an important branch of organic chemistry. This is due to the fact that a large number of natural products, e. g. hormones, antibiotics, vitamins, etc. are composed of heterocyclic structures. Often, these compounds show beneficial properties and are therefore applied as pharmaceuticals to treat diseases or as insecticides, herbicides or fungicides in crop protection. This volume presents important pharmaceuticals. Each of the 20 chapters covers in a concise manner one class of heterocycles, clearly structuredas follows: * Structural formulas of most important examples (market products) * Short background of history or discovery * Typical syntheses of important examples * Mode of action * Characteristic biological activity * Structure-activity relationship * Additional chemistry information (e.g. further transformations, alternative syntheses, metabolic pathways, etc.) * References. A valuable one-stop reference source for researchers in academia and industry as well as for graduate students with career aspirations in the pharmaceutical chemistry.
This book contains 20 chapters, which are divided into 5 sections. Section 1 covers different aspects of insecticide resistance of selected economically important plant insect pests, whereas section 2 includes chapters about the importance, development and insecticide resistance management in controlling malaria vectors. Section 3 is dedicated to some general questions in insecticide resistance, while the main topic of section 4 is biochemical approaches of insecticide resistance mechanisms. Section 5 covers ecologically acceptable approaches for overcoming insecticide resistance, such are the use of mycoinsecticides, and understanding the role of some plant chemical compounds, which are important in interactions between plants, their pests and biological control agents.
The first book in two decades to address this multi-faceted field, The Toxicology and Biochemistry of Insecticides provides the most up-to-date information on insecticide classification, formulation, mode of action, resistance, metabolism, environmental fate, and regulatory legislation. The book draws on the author's groundbreaking research
Aphids are among the major global pest groups, causing serious economic damage to many food and commodity crops in most parts of the world. This revision and update of the well-received first edition published ten years ago reflects the expansion of research in genomics, endosymbionts and semiochemicals, as well as the shift from control of aphids with insecticides to a more integrated approach imposed by increasing resistance in the aphids and government restrictions on pesticides. The book remains a comprehensive and up-to-date reference work on the biology of aphids, the various methods of controlling them and the progress of integrated pest management as illustrated by ten case histories.
The publication of the extensive 7-volume work Comprehensive Molecular Insect Science provided library customers and their end-users with a complete reference encompassing important developments and achievements in modern insect science, including reviews on the ecdysone receptor, lipocalins, and bacterial toxins. One of the most popular areas in entomology is control, and this derivative work, Insect Control, taps into a previously unapproached market – the end user who desires to purchase a comprehensive yet affordable work on important aspects of this topic. Contents will include timeless articles covering insect growth- and development-disrupting insecticides, mechanisms and use of Bacillus thuringiensis, biology and genomics of polydnaviruses, pheromones: function and use in insect control, and more. New summaries for each chapter will give an overview of developments in the related article since its original publication. - Articles selected by the known and respected editor-in-chief and co-editor of the original MRW - The articles are classic reviews offering broad coverage of essential topics in insect control, with special addenda including author notes on the chapter since its original publication - Introduction by the editors puts the selected body of work in context for this volume, highlighting the need for entomologists and related researchers to have these reviews in their personal collection