Download Free Inositol Phospholipid Metabolism And Phosphatidyl Inositol Kinases Book in PDF and EPUB Free Download. You can read online Inositol Phospholipid Metabolism And Phosphatidyl Inositol Kinases and write the review.

An understanding of the mechanisms by which plants perceive environmental cues, both physical and chemical, and transduce the signals that influence specific expression of genes, is an area of intensive scientific research. With the completion of the genome sequence of Arabidopsis it is understood now that a larger number of genes encode for proteins involved in signalling cascades and transcription factors. In this volume, different chapters deal with plant receptors, second messengers like calcium ions, phosphoinositides, salicylic acid and nitrous oxide, calcium binding proteins and kinases. In addition to dealing with the response of plants to light, hormones, pathogens, heat, etc. on cellular activity, work currently going on in apoptosis, cell division, and plastid gene expression is also covered in this book.
Biochemistry of Lipids: Lipoproteins and Membranes, Volume Six, contains concise chapters that cover a wide spectrum of topics in the field of lipid biochemistry and cell biology. It provides an important bridge between broad-based biochemistry textbooks and more technical research publications, offering cohesive, foundational information. It is a valuable tool for advanced graduate students and researchers who are interested in exploring lipid biology in more detail, and includes overviews of lipid biology in both prokaryotes and eukaryotes, while also providing fundamental background on the subsequent descriptions of fatty acid synthesis, desaturation and elongation, and the pathways that lead the synthesis of complex phospholipids, sphingolipids, and their structural variants. Also covered are sections on how bioactive lipids are involved in cell signaling with an emphasis on disease implications and pathological consequences. - Serves as a general reference book for scientists studying lipids, lipoproteins and membranes and as an advanced and up-to-date textbook for teachers and students who are familiar with the basic concepts of lipid biochemistry - References from current literature will be included in each chapter to facilitate more in-depth study - Key concepts are supported by figures and models to improve reader understanding - Chapters provide historical perspective and current analysis of each topic
Lipids are the most abundant organic compounds found in the brain, accounting for up to 50% of its dry weight. The brain lipidome includes several thousands of distinct biochemical structures whose expression may greatly vary according to age, gender, brain region, cell type, as well as subcellular localization. In synaptic membranes, brain lipids specifically interact with neurotransmitter receptors and control their activity. Moreover, brain lipids play a key role in the generation and neurotoxicity of amyloidogenic proteins involved in the pathophysiology of neurological diseases. The aim of this book is to provide for the first time a comprehensive overview of brain lipid structures, and to explain the roles of these lipids in synaptic function, and in neurodegenerative diseases, including Alzheimer's, Creutzfeldt-Jakob's and Parkinson's. To conclude the book, the authors present new ideas that can drive innovative therapeutic strategies based on the knowledge of the role of lipids in brain disorders. - Written to provide a "hands-on" approach for readers - Biochemical structures explained with molecular models, and molecular mechanisms explained with simple drawings - Step-by-step guide to memorize and draw lipid structures - Each chapter features a content summary, up-to-date references for additional study, and a key experiment with an explanation of the technique
A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.
DNA Sensors and Inflammasomes, Volume 625, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. New sections in this release include Phosphorylation and dimerization of STING and IRF3, cGAS enzymology, Synthesis and identification of immuno-stimulatory CDNs, Tracking cGAS activity/ cGAMP formation using SPR/NMR, Using an enzyme coupled assay to track cGAS activity under steady states, Tracking the polymerization of DNA sensors, inflammasome receptors, and downstream signaling partners using FRET, NLRC4 structure, Tracking TREX1 activity, DNA association and dissociation kinetics of PARP1, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Enzymology series - Includes the latest information on DNA sensors and inflammasomes
Offers a review of developments along with tried and tested methods for isolation, resolution and quantification of inositol phospholipids and inositol polyphosphates in both cells and tissues. This book includes detailed methodology for identification of molecular species of inositol phospholipids, including their phosphates and glycans.
TRP Channels as Therapeutic Targets: From Basic Science to Clinical Use is authored by experts across academia and industry, providing readers with a complete picture of the therapeutic potential and challenges associated with using TRP channels as drug targets. This book offers a unique clinical approach by covering compounds that target TRP channels in pre-clinical and clinical phases, also offering a discussion of TRP channels as biomarkers. An entire section is devoted to the novel and innovative uses of these channels across a variety of diseases, offering strategies that can be used to overcome the adverse effects of first generation TRPV1 antagonists. Intended for all researchers and clinicians working toward the development of successful drugs targeting TRP channels, this book is an essential resource chocked full of the latest clinical data and findings. - Contains comprehensive coverage of TRP channels as therapeutic targets, from emerging clinical indications to completed clinical trials - Discusses TRP channels as validated targets, ranging from obesity and diabetes through cancer and respiratory disorders, kidney diseases, hypertension, neurodegenerative disorders, and more - Provides critical analysis of the complications and side effects that have surfaced during clinical trials, offering evidence-based suggestions for overcoming them
A collection of papers that comprehensively describe the major areas of research on lipid metabolism of plants. State-of-the-art knowledge about research on fatty acid and glycerolipid biosynthesis, isoprenoid metabolism, membrane structure and organization, lipid oxidation and degradation, lipids as intracellular and extracellular messengers, lipids and environment, oil seeds and gene technology is reviewed. The different topics covered show that modern tools of plant cellular and molecular biology, as well as molecular genetics, have been recently used to characterize several key enzymes of plant lipid metabolism (in particular, desaturases, thioesterases, fatty acid synthetase) and to isolate corresponding cDNAs and genomic clones, allowing the use of genetic engineering methods to modify the composition of membranes or storage lipids. These findings open fascinating perspectives, both for establishing the roles of lipids in membrane function and intracellular signalling and for adapting the composition of seed oil to the industrial needs. This book will be a good reference source for research scientists, advanced students and industrialists wishing to follow the considerable progress made in recent years on plant lipid metabolism and to envision the new opportunities offered by genetic engineering for the development of novel oil seeds.
In plant cells, the plasma membrane is a highly elaborated structure that functions as the point of exchange with adjoining cells, cell walls and the external environment. Transactions at the plasma membrane include uptake of water and essential mineral nutrients, gas exchange, movement of metabolites, transport and perception of signaling molecules, and initial responses to external biota. Selective transporters control the rates and direction of small molecule movement across the membrane barrier and manipulate the turgor that maintains plant form and drives plant cell expansion. The plasma membrane provides an environment in which molecular and macromolecular interactions are enhanced by the clustering of proteins in oligimeric complexes for more efficient retention of biosynthetic intermediates, and by the anchoring of protein complexes to promote regulatory interactions. The coupling of signal perception at the membrane surface with intracellular second messengers also involves transduction across the plasma membrane. Finally, the generation and ordering of the external cell walls involves processes mediated at the plant cell surface by the plasma membrane. This volume is divided into three sections. The first section describes the basic mechanisms that regulate all plasma membrane functions. The second describes plasma membrane transport activity. The final section of the book describes signaling interactions at the plasma membrane. These topics are given a unique treatment in this volume, as the discussions are restricted to the plasma membrane itself as much as possible. A more complete knowledge of the plasma membrane’s structure and function is essential to current efforts to increase the sustainability of agricultural production of food, fiber, and fuel crops.
Pediatric Allergy supplies the comprehensive guidance you need to diagnose, manage, and treat virtually any type of allergy seen in children. Drs. Leung, Sampson, Geha, and Szefler present the new full-color second edition, with coverage of the diagnosis and management of anaphylaxis, the immune mechanisms underlying allergic disease, the latest diagnostic tests, and more. Treat the full range of pediatric allergic and immunologic diseases through clinically focused coverage relevant to both allergists and pediatricians. Understand the care and treatment of pediatric patients thanks to clinical pearls discussing the best approaches. Easily refer to appendices that list common food allergies and autoantibodies in autoimmune diseases. Apply the newest diagnostic tests available—for asthma, upper respiratory allergy, and more—and know their benefits and contraindications. Treat the allergy at its source rather than the resulting reactions through an understanding of the immune mechanisms underlying allergic diseases. Get coverage of new research that affects methods of patient treatment and discusses potential reasons for increased allergies in some individuals. Better manage potential anaphylaxis cases through analysis of contributing facts and progression of allergic disease. Effectively control asthma and monitor its progression using the new step-by-step approach. Eliminate difficulty in prescribing antibiotics thanks to coverage of drug allergies and cross-reactivity.