Download Free Inorganic Materials For Energy Medicine And Environmental Remediation Book in PDF and EPUB Free Download. You can read online Inorganic Materials For Energy Medicine And Environmental Remediation and write the review.

This book presents concepts, methods and applications of inorganic nanomaterials for energy applications such as fuel cells and batteries, for environmental applications such as water purification, and for medicinal applications such as cancer treatments. The founding father of nanotechnology, Eric Drexler, always communicated a unique vision in exploring new materials and creating advancements in molecular nanotechnology. He emphasized the potential advantages of smaller size, higher efficiency and less needed resources for applications in energy, environment and medicine. A higher surface to volume ratio of inorganic nanomaterials is a key property.
Nanocomposites-Advanced Materials for Energy and Environmental Aspects provides a brief introduction to metal oxides. The book then discusses novel fabrication methodologies and eco-friendly methods for using a broad range of metal oxide-based nanocomposites in innovative ways. Key aspects include fundamental characteristics of environmentally sustainable fabrication of materials for solar power, power generation and the textiles industries. Commercialization and economic aspects that are currently of major significance are also discussed in detail. The book represents an important information resource for material scientists and engineers to create the next generation of products and devices for energy and environmental applications. Metal and metal oxide-based nanocomposites are at the heart of some of the most exciting developments in the field of energy and environmental research. They have exceptional properties and are utilized in electronic and environmental sensing devices, for energy storage, electrode materials, fuel cells, membranes, and more. - Covers fabrication, standard characterization and photocatalytic mechanism for a wide range of applications - Includes broad ranging metal and metal oxide-based applications covering environmental, energy, electronics, oil, gas, water treatment and sensing - Evaluates dye consumption in the textiles industries and the energy related research that will determine options for sustainable and transformational opportunities
Functionalized magnetic nanomaterials are used in data storage, biomedical, environmental, and heterogeneous catalysis applications but there remain developmental challenges to overcome. Nanostructured Magnetic Materials: Functionalization and Diverse Applications covers different synthesis methods for magnetic nanomaterials and their functionalization strategies and highlights recent progress, opportunities, and challenges to utilizing these materials in real-time applications. Reviews recent progress made in the surface functionalization of magnetic nanoparticles Discusses physico-chemical characterization and synthesis techniques Presents the effect of the external magnetic field Details biological, energy, and environmental applications as well as future directions This reference will appeal to researchers, professionals, and advanced students in materials science and engineering and related fields.
This contributed volume discusses the current status of the occurrences, fate and transport of persistent pollutants in water and wastewater. This contents compile the state-of-the-art of emerging technologies such as nanotechnology, advanced oxidation process, membrane processes, sorption, etc. for the clean-up of persistent pollutants in water including heavy metals, pharmaceuticals, phenolic compounds as well as microplastics and their by-products. This volume will be useful as a guide for the researchers to build strategies to deal with persistent pollutant. It also discusses the principal aspects of degradation mechanism of the pollutants, toxic by-products and effectiveness of the emerging technologies. This volume will be a useful guide for those working in soil and water protection, and environmental civil engineering.
There is a growing interest in applying the UN's sustainable development goals to a variety of sectors. One can use certain principles of green chemistry in the emerging fields of nanoscience and nanotechnology. The green chemistry approach focuses on the creation of nanodimensional materials that have a low environmental impact, are cost-effective, and have no negative consequences on the environment. This book aims to summarise the different alternative green chemical routes. Furthermore, the book describes the use of nano-dimensional materials for sustainable energy generation and environmental remediation applications.
This book details the use of conducting polymers and their composites in supercapacitors, batteries, photovoltaics, and fuel cells, nearly covering the entire spectrum of energy area under one title. Conducting Polymers for Advanced Energy Applications covers a range of advanced materials based on conducting polymers, the fundamentals, and the chemistry behind these materials for energy applications. FEATURES Covers materials, chemistry, various synthesis approaches, and the properties of conducting polymers and their composites Discusses commercialization and markets and elaborates on advanced applications Presents an overview and the advantages of using conducting polymers and their composites for advanced energy applications Describes a variety of nanocomposites, including metal oxides, chalcogenides, graphene, and materials beyond graphene Offers the fundamentals of electrochemical behavior This book provides a new direction for scientists, researchers, and students in materials science and polymer chemistry who seek to better understand the chemistry behind conducting polymers and improve their performance for use in advanced energy applications.
Environmental Inorganic Chemistry for Engineers explains the principles of inorganic contaminant behavior, also applying these principles to explore available remediation technologies, and providing the design, operation, and advantages or disadvantages of the various remediation technologies. Written for environmental engineers and researchers, this reference provides the tools and methods that are imperative to protect and improve the environment. The book's three-part treatment starts with a clear and rigorous exposition of metals, including topics such as preparations, structures and bonding, reactions and properties, and complex formation and sequestering. This coverage is followed by a self-contained section concerning complex formation, sequestering, and organometallics, including hydrides and carbonyls. Part Two, Non-Metals, provides an overview of chemical periodicity and the fundamentals of their structure and properties. - Clearly explains the principles of inorganic contaminant behavior in order to explore available remediation technologies - Provides the design, operation, and advantages or disadvantages of the various remediation technologies - Presents a clear exposition of metals, including topics such as preparations, structures, and bonding, reaction and properties, and complex formation and sequestering
Unlock the world of STEM with "STEM Demystified: A Comprehensive Guide to Essential Terms." Dive into fundamental concepts from Acceleration to Zoology, providing clarity on complex topics in science, technology, engineering, and mathematics. Perfect for students, educators, and enthusiasts seeking a deeper understanding of STEM disciplines.
Nanofillers for Sustainable Applications provides an in-depth review of the wide-ranging applications of nanofillers. It explores both synthetic and natural nanofillers and focuses on their use as reinforcement and active fillers in composite structures. Covering various aspects of nanofillers, including synthesis methods, characteristics, properties, and compatibility, this book highlights the potential of nanofillers as functional materials for different applications and offers a collection of comparative studies to showcase their efficacy. It emphasizes sustainability, intelligent design, and high-end applications in fields such as packaging, pulp and paper, aerospace, automotive, medicine, chemical industry, biodiesel, and chemical sensors. This book is organized into several sections, covering topics such as synthetic nanomaterials, nanosafety, natural nanofillers, polymer composites, metal nanofillers, nanofillers in various industries, nanofillers in renewable energy, nanofillers in biomedical sectors, and nanofillers in automotive and aerospace industries. This book will be a useful reference for undergraduate and graduate students and academic researchers in the fields of materials science, nanomaterials, and polymer composites. Key features: • Focuses on the fabrication approaches used for nanofillers in nanocomposites. • Covers materials selection, design solutions, manufacturing techniques, and structural analysis, highlighting their potential as functional materials in different applications. • Explores the positive environmental impact and material property improvements resulting from increased composite utilization across diverse industries. • Discusses other types of nanofillers like nanocellulose, metal-based, graphene, and wood-based materials. • Includes case studies from leading industrial and academic experts.