Download Free Innovative Thermal Treatment Processes Book in PDF and EPUB Free Download. You can read online Innovative Thermal Treatment Processes and write the review.

Food process engineering, a branch of both food science and chemical engineering, has evolved over the years since its inception and still is a rapidly changing discipline. While traditionally the main objective of food process engineering was preservation and stabilization, the focus today has shifted to enhance health aspects, flavour and taste, nutrition, sustainable production, food security and also to ensure more diversity for the increasing demand of consumers. The food industry is becoming increasingly competitive and dynamic, and strives to develop high quality, freshly prepared food products. To achieve this objective, food manufacturers are today presented with a growing array of new technologies that have the potential to improve, or replace, conventional processing technologies, to deliver higher quality and better consumer targeted food products, which meet many, if not all, of the demands of the modern consumer. These new, or innovative, technologies are in various stages of development, including some still at the R&D stage, and others that have been commercialised as alternatives to conventional processing technologies. Food process engineering comprises a series of unit operations traditionally applied in the food industry. One major component of these operations relates to the application of heat, directly or indirectly, to provide foods free from pathogenic microorganisms, but also to enhance or intensify other processes, such as extraction, separation or modification of components. The last three decades have also witnessed the advent and adaptation of several operations, processes, and techniques aimed at producing high quality foods, with minimum alteration of sensory and nutritive properties. Some of these innovative technologies have significantly reduced the thermal component in food processing, offering alternative nonthermal methods. Food Processing Technologies: A Comprehensive Review, Three Volume Set covers the latest advances in innovative and nonthermal processing, such as high pressure, pulsed electric fields, radiofrequency, high intensity pulsed light, ultrasound, irradiation and new hurdle technology. Each section will have an introductory article covering the basic principles and applications of each technology, and in-depth articles covering the currently available equipment (and/or the current state of development), food quality and safety, application to various sectors, food laws and regulations, consumer acceptance, advancements and future scope. It will also contain case studies and examples to illustrate state-of-the-art applications. Each section will serve as an excellent reference to food industry professionals involved in the processing of a wide range of food categories, e.g., meat, seafood, beverage, dairy, eggs, fruits and vegetable products, spices, herbs among others.
Innovative Food Processing Technologies: Extraction, Separation, Component Modification and Process Intensification focuses on advances in new and novel non-thermal processing technologies which allow food producers to modify and process food with minimal damage to the foodstuffs. The book is highly focused on the application of new and novel technologies, beginning with an introductory chapter, and then detailing technologies which can be used to extract food components. Further sections on the use of technologies to modify the structure of food and the separation of food components are also included, with a final section focusing on process intensification and enhancement. Provides information on a variety of food processing technologies Focuses on advances in new and novel non-thermal processing technologies which allow food producers to modify and process food with minimal damage to the foodstuffs Presents a strong focus on the application of technologies in a variety of situations Created by editors who have a background in both the industry and academia
This new edition discusses the physical and engineering aspects of the thermal processing of packaged foods and examines the methods which have been used to establish the time and temperature of processes suitable to achieve adequate sterilization or pasteurization of the packaged food. The third edition is totally renewed and updated, including new concepts and areas that are relevant for thermal food processing: This edition is formed by 22 chapters—arranged in five parts—that maintain great parts of the first and second editions The First part includes five chapters analyzing different topics associated to heat transfer mechanism during canning process, kinetic of microbial death, sterilization criteria and safety aspect of thermal processing. The second part, entitled Thermal Food Process Evaluation Techniques, includes six chapters and discusses the main process evaluation techniques. The third part includes six chapters treating subjects related with pressure in containers, simultaneous sterilization and thermal food processing equipment. The fourth part includes four chapters including computational fluid dynamics and multi-objective optimization. The fifth part, entitled Innovative Thermal Food Processing, includes a chapter focused on two innovative processes used for food sterilization such high pressure with thermal sterilization and ohmic heating. Thermal Processing of Pa ckaged Foods, Third Edition is intended for a broad audience, from undergraduate to post graduate students, scientists, engineers and professionals working for the food industry.
Thermal processing remains one of the most important processes in the food industry. Now in its second edition, Thermal Food Processing: New Technologies and Quality Issues continues to explore the latest developments in the field. Assembling the work of a worldwide panel of experts, this volume highlights topics vital to the food industry today an
Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms covers the latest advances in non-thermal processing, including mechanical processes (such as high pressure processing, high pressure homogenization, high hydrodynamic pressure processing, pressurized fluids); electromagnetic technologies (like pulsed electric fields, high voltage electrical discharges, Ohmic heating, chemical electrolysis, microwaves, radiofrequency, cold plasma, UV-light); acoustic technologies (ultrasound, shockwaves); innovative chemical processing technologies (ozone, chlorine dioxide, electrolysis, oxidized water) and others like membrane filtration and dense phase CO2. The title also focuses on understanding the effects of such processing technologies on inactivation of the most relevant pathogenic and spoilage microorganisms to ensure food safety and stability. Over the course of the 20th century, the interest and demand for the development and application of new food preservation methods has increased significantly. The research in the last 50 years has produced various innovative food processing technologies and the use of new technologies for inactivation of spoilage and/or pathogenic microorganisms will depend on several factors. At this stage of development there is a need to better understand the mechanisms that govern microbial inactivation as induced by new and innovative processing technologies, as well as suitable and effective conditions for inactivating the microorganism. Serves as a summary of relevant spoilage and pathogenic microorganisms for different foods as influenced by the application of innovative technologies for their preservation Provides readers with an in-depth understanding on how effective innovative processing technologies are for controlling spoilage and pathogenic microorganisms in different foods Integrates concepts in order to find the optimum conditions for microbial inactivation and preservation of major and minor food compounds
Innovative Thermal and Nonthermal Processing, Bioacessibility and Bioavailability of Nutrients and Bioactive Compounds presents the implications of conventional and innovative processing on the nutritional and health aspects of food products. Chapters cover the relationship between gastronomic science, nutrition and food science in the development of healthy products, introduce the most commonly used conventional and innovative approaches to preserve foods and extract valuable compounds, describe how processing affects bioavailability and bioaccessibility of lipids, particularly fatty acids, protein, amino acids and carbohydrates, and discuss how processing affects bioavailability and bioaccessibility of minerals, water-soluble vitamins, and fat soluble vitamins. Final sections cover processing, bioavailability and bioaccessibility of bioactive compounds, describing how processing (conventional and non-conventional) is affecting to bioavailability and bioaccessibility of bioactive sulphur compounds, polyphenols, flavonoids, and bioactive peptides. Presents the implications of conventional and innovative processing on the nutritional and health aspects of food products Introduces the most commonly used conventional and innovative approaches to preserve foods and extract valuable compounds Explains how processing (conventional and non-conventional) affects the bioavailability and bioaccessibility of bioactive sulphur compounds, polyphenols, flavonoids and bioactive peptides
This new volume provides a comprehensive overview of thermal and nonthermal processing of food with new and innovative technologies. Recent innovations in thermal as well as nonthermal technologies, which are specifically applied for potable water and fluid foods (milk, juice, soups, etc.), are well documented for their high bioavailability of macro- and micronutrients and are very promising. This volume brings together valuable information on fluid and microbial characteristics and quality dynamics that facilitate the adoption of new technology for food processing. Some new technologies and methods covered include the application of microwaves in heating, drying, pasteurization, sterilization, blanching, baking, cooking, and thawing; microwave-assisted extraction of compounds; using low-electric fields; alternation of temperature and pressure of supercritical carbon dioxide; ultrasound-assisted osmotic dehydration; hydrodynamic cavitation; high-pressure processing; gamma-irradiation; and more. The nonthermal technologies discussed have been developed as an alternative to thermal processing while still meeting required safety or shelf-life demands and minimizing the effects on nutritional and quality attributes.
Reviews innovative processing techniques and recent developments in food formulation, identification, and utilization of functional ingredients Food Formulation: Novel Ingredients and Processing Techniques is a comprehensive and up-to-date account of novel food ingredients and new processing techniques used in advanced commercial food formulations. This unique volume will help students and industry professionals alike in understanding the current trends, emerging technologies, and their impact on the food formulation techniques. Contributions from leading academic and industrial experts provide readers with informed and relevant insights on using the latest technologies and production processes for new product development and reformulations. The text first describes the basis of a food formulation, including smart protein and starch ingredients, healthy ingredients such as salt and sugar replacers, and interactions within the food components. Emphasizing operational principles, the book reviews state-of-the-art 3D printing technology, encapsulation and a range of emerging technologies including high pressure, pulsed electric field, ultrasound and supercritical fluid extraction. The final chapters discuss recent developments and trends in food formulation, from foods that target allergies and intolerance, to prebiotic and probiotic food formulation designed to improve gut health. A much-needed reference on novel sourcing of food ingredients, processing technologies, and application, this book: Explores new food ingredients as well as impact of processing on ingredient interactions Describes new techniques that improve the flavor and acceptability of functional food ingredients Reviews mathematical tools used for recipe formulation, process control and consumer studies Includes regulations and legislations around tailor-made food products Food Formulation: Novel Ingredients and Processing Techniques is an invaluable resource for students, educators, researchers, food technologists, and professionals, engineers and scientists across the food industry.
Chapter 1. Status and Trends of Novel Thermal and Non-Thermal Technologies for Fluid Foods -- Chapter 2. Fluid Dynamics in Novel Thermal and Non-Thermal Processes -- Chapter 3. Fluid Rheology in Novel Thermal and Non-Thermal Processes --Chapter 4. Pulsed Electric Field Processing of Fluid Foods -- Chapter 5. High Pressure Processing of Fluid Foods -- Chapter 6. Ultrasound Processing of Fluid Foods -- Chapter 7. Irradiation of Fluid Foods -- Chapter 8. Ultraviolet and Pulsed Light Processing of Fluid Foods -- Chapter 9. Ozone Processing of Fluid Foods -- Chapter 10. Dense Phase Carbon Dioxide Processing of Fluid Foods -- Chapter 11. Ohmic Heating of Fluid Foods -- Chapter 12. Microwave Heating of Fluid Foods -- Chapter 13. Infrared Heating of Fluid Foods -- Chapter 14. Modelling the Kinetics of Microbial and Quality Attributes of Fluid Food during Novel Thermal and Non-Thermal Processes -- Chapter 15. Regulatory and Legislative issues for Thermal and Non-Thermal Technologies: An EU Pers ...