Download Free Innovative Renewable Waste Conversion Technologies Book in PDF and EPUB Free Download. You can read online Innovative Renewable Waste Conversion Technologies and write the review.

This book investigates innovative solutions to increase the share of renewable engery in the global power mix, with a particular focus on improved and sustainable biomass conversion technologies. To this end, the book deals with an analysis of the generation mix of renewable energies (including biofuels, renewable waste and biogas) in the overall power balance of several countries. In addition, the possibilities of using bioenergy resources in the context of power generation are thoroughly analyzed. As one of the most important ways of converting biomass into energy, the combustion process is analyzed in detail, highlighting the vast potential for the use of innovative biofuels. In this context, a detailed classification of existing biofuels is established, reflecting the relationship between their energy properties and their potential use in industrial facilities. Additionally, the most efficient combustion technologies for the respective applications are discussed. Furthermore, the authors emphasize that the management of renewable waste, both from industry (tannery waste and oils from transport) and agriculture, requires an economic and environmental friendly approach. The challenges of burning various renewable waste fuels and upgrading industrial facilities are discussed, and the ideas and technologies presented in this book contribute to the UN Sustainable Development Goal (SDG) for "Affordable and Clean Energy". The book is a useful resource for professionals dealing with current and upcoming activities related to renewable energy combustion, and a good starting point for young researchers.
Advanced Technology for the Conversion of Waste into Fuels and Chemicals: Volume 1: Biological Processes presents advanced and combined techniques that can be used to convert waste to energy, including combustion, gasification, paralysis, anaerobic digestion and fermentation. The book focuses on solid waste conversion to fuel and energy and presents the latest advances in the design, manufacture, and application of conversion technologies. Contributors from the fields of physics, chemistry, metallurgy, engineering and manufacturing present a truly trans-disciplinary picture of the field. Chapters cover important aspects surrounding the conversion of solid waste into fuel and chemicals, describing how valuable energy can be recouped from various waste materials. As huge volumes of solid waste are produced globally while huge amounts of energy are produced from fossil fuels, the technologies described in this comprehensive book provide the information necessary to pursue clean, sustainable power from waste material. - Presents the latest advances in waste to energy techniques for converting solid waste to valuable fuel and energy - Brings together contributors from physics, chemistry, metallurgy, engineering and the manufacturing industry - Includes advanced techniques such as combustion, gasification, paralysis, anaerobic digestion and fermentation - Goes far beyond municipal waste, including discussions on recouping valuable energy from a variety of industrial waste materials - Describes how waste to energy technologies present an enormous opportunity for clean, sustainable energy
Increasing global consumerism and population has led to an increase in the levels of waste produced. Waste to energy (WTE) conversion technologies can be employed to convert residual wastes into clean energy, rather than sending these wastes directly to landfill. Waste to energy conversion technology explores the systems, technology and impacts of waste to energy conversion.Part one provides an introduction to WTE conversion and reviews the waste hierarchy and WTE systems options along with the corresponding environmental, regulatory and techno-economic issues facing this technology. Part two goes on to explore further specific aspects of WTE systems, engineering and technology and includes chapters on municipal solid waste (MSW) combustion plants and WTE systems for district heating. Finally, part three highlights pollution control systems for waste to energy technologies.Waste to energy conversion technology is a standard reference book for plant managers, building engineers and consultants requiring an understanding of WTE technologies, and researchers, scientists and academics interested in the field. - Reviews the waste hierarchy and waste to energy systems options along with the environmental and social impact of WTE conversion plants - Explores the engineering and technology behind WTE systems including considerations of municipal solid waste (MSW) its treatment, combustion and gasification - Considers pollution control systems for WTE technologies including the transformation of wast combustion facilities from major polluters to pollution sinks
Waste Biorefinery: Integrating Biorefineries for Waste Valorisation provides the various options available for several renewable waste streams. The book includes scientific and technical information pertaining to the most advanced and innovative processing technologies used for the conversion of biogenic waste to biofuels, energy products and biochemicals. In addition, the book reports on recent developments and new achievements in the field of biochemical and thermo-chemical methods and the necessities and potential generated by different kinds of biomass in presumably more decentralized biorefineries. The book presents an assortment of case-studies from developing and developed countries pertaining to the use of sustainable technologies for energy recovery from different waste matrices. Advantages and limitations of different technologies are also discussed by considering the local energy demands, government policies, environmental impacts, and education in bioenergy. - Provides information on the most advanced and innovative processes for biomass conversion - Covers information on biochemical and thermo-chemical processes and products development on the principles of biorefinery - Includes information on the integration of processes and technologies for the production of biofuels, energy products and biochemicals - Demonstrates the application of various processes with proven case studies
Sustainable Food Waste-to-Energy Systems assesses the utilization of food waste in sustainable energy conversion systems. It explores all sources of waste generated in the food supply chain (downstream from agriculture), with coverage of industrial, commercial, institutional and residential sources. It provides a detailed analysis of the conventional pathways for food waste disposal and utilization, including composting, incineration, landfilling and wastewater treatment. Next, users will find valuable sections on the chemical, biochemical and thermochemical waste-to-energy conversion processes applicable for food waste and an assessment of commercially available sustainable food waste-to-energy conversion technologies. Sustainability aspects, including consideration of environmental, economic and social impacts are also explored. The book concludes with an analysis of how deploying waste-to-energy systems is dependent on cross-cutting research methods, including geographical information systems and big data. It is a useful resource for professionals working in waste-to-energy technologies, as well as those in the food industry and food waste management sector planning and implementing these systems, but is also ideal for researchers, graduate students, energy policymakers and energy analysts interested in the most recent advances in the field. - Provides guidance on how specific food waste characteristics drive possible waste-to-energy conversion processes - Presents methodologies for selecting among different waste-to-energy options, based on waste volumes, distribution and properties, local energy demand (electrical/thermal/steam), opportunities for industrial symbiosis, regulations and incentives and social acceptance, etc. - Contains tools to assess potential environmental and economic performance of deployed systems - Links to publicly available resources on food waste data for energy conversion
MUNICIPAL SOLID WASTE TO ENERGY CONVERSION PROCESSES A TECHNICAL AND ECONOMIC REVIEW OF EMERGING WASTE DISPOSAL TECHNOLOGIES Intended for a wide audience ranging from engineers and academics to decision-makers in both the public and private sectors, Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons reviews the current state of the solid waste disposal industry. It details how the proven plasma gasification technology can be used to manage Municipal Solid Waste (MSW) and to generate energy and revenues for local communities in an environmentally safe manner with essentially no wastes. Beginning with an introduction to pyrolysis/gasification and combustion technologies, the book provides many case studies on various waste-to-energy (WTE) technologies and creates an economic and technical baseline from which all current and emerging WTE technologies could be compared and evaluated. Topics include: Pyrolysis/gasification technology, the most suitable and economically viable approach for the management of wastes Combustion technology Other renewable energy resources including wind and hydroelectric energy Plasma economics Cash flows as a revenue source for waste solids-to-energy management Plant operations, with an independent case study of Eco-Valley plant in Utashinai, Japan Extensive case studies of garbage to liquid fuels, wastes to electricity, and wastes to power ethanol plants illustrate how currently generated MSW and past wastes in landfills can be processed with proven plasma gasification technology to eliminate air and water pollution from landfills.
Biomass to Energy Conversion Technologies: The Road to Commercialization examines biomass production, biomass types, properties and characterization, and energy conversion technologies with an emphasis on the production of a gaseous fuel to supplement the gas derived from the landfilling of organic wastes (landfill gas) and used in gas engines to produce electricity. The book discusses the integration of both fermentation and anaerobic digestion in a biorefinery concept that allows the production of ethanol—along with biogas—to be used to produce heat and electricity, thus improving overall energy balance. Included case studies based on worldwide projects discuss both risks and challenges. The main studies on the combination of both bioethanol and biogas production processes are reviewed and the strength and weakness of the integrated treatment for industrial application are highlighted. The book also considers gasification technologies and their potential for biomass gasification and lists the advantages and disadvantages of using of biomass as a source of energy, the path of commercialization of the various processes, energy related environmental issues. - Highlights commercialization and technological risks - Discusses challenges, limitations and future prospects of third- and fourth generation biofuels - Includes integration of both fermentation and anaerobic digestion in a biorefinery concept - Discusses energy related environment issues (Greenhouse effect, acid rain, air pollution)
Advanced Technology for the Conversion of Waste into Fuels and Chemicals: Volume 2: Chemical Processes is the second of two volumes by the editors (the first volume is Advanced Technology for the Conversion of Waste into Fuels and Chemicals: Biological Processes). This volume presents advanced techniques and combined techniques used to convert energy to waste, including combustion, gasification, paralysis, anaerobic digestion and fermentation. The title focuses on solid waste conversion to fuel and energy, presenting advances in the design, manufacture and application of conversion technologies. Contributors from physics, chemistry, metallurgy, engineering and manufacturing present a truly trans-disciplinary picture of waste to energy conversion. Huge volumes of solid waste are produced globally while, at the same time, huge amounts of energy are produced from fossil fuels. Waste to energy (WTE) technologies are developing rapidly, holding out the potential to make clean, sustainable power from waste material. These WTE procedures incorporate various methods and blended approaches, and present an enormous opportunity for clean, sustainable energy. Presents the latest advances in waste to energy techniques for converting solid waste to valuable fuel and energy Brings together contributors from physics, chemistry, metallurgy, engineering and the manufacturing industry Includes advanced techniques such as combustion, gasification, paralysis, anaerobic digestion and fermentation Goes far beyond municipal waste, including the recouping of valuable energy from a variety of industrial waste materials
Biovalorisation of Wastes to Renewable Chemicals and Biofuels addresses advanced technologies for converting waste to biofuels and value-added products. Biovalorisation has several advantages over conventional bioremediation processes as it helps reduce the costs of bioprocesses. Examples are provided of several successfully commercialized technologies, giving insight into developing, potential processes for biovalorisation of different wastes. Different bioprocess strategies are discussed for valorising the wastes coming from the leather industry, olive oil industry, pulp and paper, winery, textile, and food industries, as well as aquaculture. A section on biorefinery for hydrocarbons and emerging contaminants is included to cover concepts on biodesulfurization of petroleum wastes, leaching of heavy metals from E - waste, and bioelectrochemical processes for CO2. Chapters on algal biorefinery are also included to focus on the technologies for conversion of CO2 sequestration and wastewater utilization. Biovalorisation of Wastes to Renewable Chemicals and Biofuels can be used as course material for graduate students in chemical engineering, chemistry, and biotechnology, and as a reference for industrial professionals and researchers who want to gain a basic understanding on the subject.
Biomass for Renewable Energy, Fuels, and Chemicals serves as a comprehensive introduction to the subject for the student and educator, and is useful for researchers who are interested in the technical details of biomass energy production. The coverage and discussion are multidisciplinary, reflecting the many scientific and engineering disciplines involved. The book will appeal to a broad range of energy professionals and specialists, farmers and foresters who are searching for methods of selecting, growing, and converting energy crops, entrepreneurs who are commercializing biomass energy projects, and those involved in designing solid and liquid waste disposal-energy recovery systems. Presents a graduated treatment from basic principles to the details of specific technologies Includes a critical analysis of many biomass energy research and commercialization activities Proposes several new technical approaches to improve efficiencies, net energy production, and economics Reviews failed projects, as well as successes, and methods for overcoming barriers to commercialization Written by a leader in the field with 40 years of educational, research, and commercialization experience