Download Free Innovative Antimetabolites In Solid Tumours Book in PDF and EPUB Free Download. You can read online Innovative Antimetabolites In Solid Tumours and write the review.

The European School of Oncology came into existence to respond to a need for information, education and training in the field of the diagnosis and treatment of cancer. There are two main reasons why such an initiative was considered necessary. Firstly, the teaching of oncology requires a rigorously multidisciplinary approach which is difficult for the Universities to put into practice since their system is mainly disciplinary orientated. Secondly, the rate of technological development that impinges on the diagnosis and treatment of cancer has been so rapid that it is not an easy task for medical faculties to adapt their curricula flexibly. With its residential courses for organ pathologies and the seminars on new techniques (laser, monoclonal antibodies, imaging techniques etc.) or on the principal therapeutic controversies (conservative or mutilating surgery, primary or adjuvant chemotherapy, radiotherapy alone or integrated), it is the ambition of the European School of Oncology to fill a cultural and scientific gap and, thereby, create a bridge between the University and Industry and between these two and daily medical practice. One of the more recent initiatives of ESO has been the institution of permanent study groups, also called task forces, where a limited number of leading experts are invited to meet once a year with the aim of defining the state of the art and possibly reaching a consensus on future developments in specific fields of oncology.
Medicinal Chemistry of Anticancer Drugs, Second Edition, provides an updated treatment from the point of view of medicinal chemistry and drug design, focusing on the mechanism of action of antitumor drugs from the molecular level, and on the relationship between chemical structure and chemical and biochemical reactivity of antitumor agents. Antitumor chemotherapy is a very active field of research, and a huge amount of information on the topic is generated every year. Cytotoxic chemotherapy is gradually being supplemented by a new generation of drugs that recognize specific targets on the surface or inside cancer cells, and resistance to antitumor drugs continues to be investigated. While these therapies are in their infancy, they hold promise of more effective therapies with fewer side effects. Although many books are available that deal with clinical aspects of cancer chemotherapy, this book provides a sorely needed update from the point of view of medicinal chemistry and drug design. - Presents information in a clear and concise way using a large number of figures - Historical background provides insights on how the process of drug discovery in the anticancer field has evolved - Extensive references to primary literature
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.
The past decades have seen major developments in the understanding of the cellular and molecular biology of cancer. Significant progress has been achieved regarding long-term survival for the patients of many cancers with the use of tamoxifen for treatment of breast cancer, treatment of chronic myeloid leukaemia with imatinib, and the success of biological drugs. The transition from cytotoxic chemotherapy to targeted cancer drug discovery and development has resulted in an increasing selection of tools available to oncologists. In this Special Issue of Pharmaceuticals, we highlight the opportunities and challenges in the discovery and design of innovative cancer therapies, novel small-molecule cancer drugs and antibody–drug conjugates, with articles covering a variety of anticancer therapies and potential relevant disease states and applications. Significant efforts are being made to develop and improve cancer treatments and to translate basic research findings into clinical use, resulting in improvements in survival rates and quality of life for cancer patients. We demonstrate the possibilities and scope for future research in these areas and also highlight the challenges faced by scientists in the area of anticancer drug development leading to improved targeted treatments and better survival rates for cancer patients.
Role of Nutraceuticals in Chemoresistance to Cancer, Volume Two, focuses on nutraceuticals, the compounds derived from natural sources, which are usually multi-targeted as a means to overcome chemoresistance. This book discusses the role of several compounds related to nutraceuticals and chemoresistance, such as curcumin, resveratrol, indole 3-carbinol, tocotrienols, ursolic acid, fisetin, celastrol, gambogic, butein, catechins and silymarin. It is a valuable resource for cancer researchers, oncologists and members of several areas of the biomedical field who are interested in understanding how to use nutraceuticals as a sensitizing agent for chemotherapy. - Brings updated information on natural compounds used as specific inhibitors of cell signaling pathways as reviewed by experts in the field - Presents experts analysis and summary of reported and novel findings and potential translational application in cancer patients - Describes molecular mechanisms with new and helpful approaches for the readers to use in their own investigations
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
This open access book describes marked advances in imaging technology that have enabled the visualization of phenomena in ways formerly believed to be completelyimpossible. These technologies have made major contributions to the elucidation of the pathology of diseases as well as to their diagnosis and therapy. The volume presents various studies from molecular imaging to clinical imaging. It also focuses on innovative, creative, advanced research that gives full play to imaging technology inthe broad sense, while exploring cross-disciplinary areas in which individual research fields interact and pursuing the development of new techniques where they fuse together. The book is separated into three parts, the first of which addresses the topic of visualizing and controlling molecules for life. Th e second part is devoted to imaging of disease mechanisms, while the final part comprises studies on the application of imaging technologies to diagnosis and therapy. Th e book contains the proceedings of the 12th Uehara International Symposium 2017, “Make Life Visible” sponsored by the Uehara Memorial Foundation and held from June 12 to 14, 2017. It is written by leading scientists in the field and is an open access publication under a CC BY 4.0 license.
This textbook presents concise chapters written by internationally respected experts on various important aspects of cancer-associated metabolism, offering a comprehensive overview of the central features of this exciting research field. The discovery that tumor cells display characteristic alterations of metabolic pathways has significantly changed our understanding of cancer: while the first description of tumor-specific changes in cellular energetics was published more than 90 years ago, the causal significance of this observation for the pathogenesis of cancer was only discovered in the post-genome era. The first 10 years of the twenty-first century were characterized by rapid advances in our grasp of the functional role of cancer-specific metabolism as well as the underlying molecular pathways. Various unanticipated interrelations between metabolic alterations and cancer-driving pathways were identified and currently await translation into diagnostic and therapeutic applications. Yet the speed, quantity, and complexity of these new discoveries make it difficult for researchers to keep up to date with the latest developments, an issue this book helps to remedy.