Download Free Innovations In Applied Artificial Intelligence Book in PDF and EPUB Free Download. You can read online Innovations In Applied Artificial Intelligence and write the review.

This bestselling book gives business leaders and executives a foundational education on how to leverage artificial intelligence and machine learning solutions to deliver ROI for your business.
“Intelligent systems are those which produce intelligent o?springs.” AI researchers have been focusing on developing and employing strong methods that are capable of solving complex real-life problems. The 18th International Conference on Industrial & Engineering Applications of Arti?cial Intelligence & Expert Systems (IEA/AIE 2005) held in Bari, Italy presented such work performed by many scientists worldwide. The Program Committee selected long papers from contributions presenting more complete work and posters from those reporting ongoing research. The Committee enforced the rule that only original and unpublished work could be considered for inclusion in these proceedings. The Program Committee selected 116 contributions from the 271 subm- ted papers which cover the following topics: arti?cial systems, search engines, intelligent interfaces, knowledge discovery, knowledge-based technologies, na- ral language processing, machine learning applications, reasoning technologies, uncertainty management, applied data mining, and technologies for knowledge management. The contributions oriented to the technological aspects of AI and the quality of the papers are witness to a research activity clearly aimed at consolidating the theoretical results that have already been achieved. The c- ference program also included two invited lectures, by Katharina Morik and Roberto Pieraccini. Manypeoplecontributedindi?erentwaystothesuccessoftheconferenceand to this volume. The authors who continue to show their enthusiastic interest in applied intelligence research are a very important part of our success. We highly appreciate the contribution of the members of the Program Committee, as well as others who reviewed all the submitted papers with e?ciency and dedication.
This book constitutes the refereed proceedings of the 17th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2004, held in Ottawa, Canada, in May 2004. The 129 revised full papers presented were carefully reviewed and selected from 208 submissions. The papers are organized in topical sections on neural networks, bioinformatics, data mining, general applications, autonomous agents, intelligent systems, knowledge processing and NLP, intelligent user interfaces, evolutionary computing, fuzzy logic, human-roboter interaction, computer vision and image processing, machine learning and case-based reasoning, heuristic search, security, Internet applications, planning and scheduling, constraint satisfaction, e-learning, expert systems, applications to design, machine learning, and image processing.
This book deals with artificial intelligence (AI) and its several applications. It is not an organic text that should be read from the first page onwards, but rather a collection of articles that can be read at will (or at need). The idea of this work is indeed to provide some food for thoughts on how AI is impacting few verticals (insurance and financial services), affecting horizontal and technical applications (speech recognition and blockchain), and changing organizational structures (introducing new figures or dealing with ethical issues). The structure of the chapter is very similar, so I hope the reader won’t find difficulties in establishing comparisons or understanding the differences between specific problems AI is being used for. The first chapter of the book is indeed showing the potential and the achievements of new AI techniques in the speech recognition domain, touching upon the topics of bots and conversational interfaces. The second and thirds chapter tackle instead verticals that are historically data-intensive but not data-driven, i.e., the financial sector and the insurance one. The following part of the book is the more technical one (and probably the most innovative), because looks at AI and its intersection with another exponential technology, namely the blockchain. Finally, the last chapters are instead more operative, because they concern new figures to be hired regardless of the organization or the sector, and ethical and moral issues related to the creation and implementation of new type of algorithms.
This book constitutes the refereed proceedings of the 12th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2021, held in Costa de Caparica, Portugal, in July 2021.* The 34 papers presented were carefully reviewed and selected from 92 submissions. The papers present selected results produced in engineering doctoral programs and focus on technological innovation for industry and service systems. Research results and ongoing work are presented, illustrated and discussed in the following areas: collaborative networks; smart manufacturing; cyber-physical systems and digital twins; intelligent decision making; smart energy management; communications and electronics; classification systems; smart healthcare systems; and medical devices. *The conference was held virtually. Chapters “Characteristics of Adaptable Control of Production Systems and the Role of Self-organization Towards Smart Manufacturing” and “Predictive Manufacturing: Enabling Technologies, Frameworks and Applications” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Increasingly, business leaders and managers recognize that machine learning offers their companies immense opportunities for competitive advantage. But most discussions of machine learning are intensely technical or academic, and don't offer practical information leaders can use to identify, evaluate, plan, or manage projects. Deploying Machine Learning fills that gap, helping them clarify exactly how machine learning can help them, and collaborate with technologists to actually apply it successfully. You'll learn: What machine learning is, how it compares to "big data" and "artificial intelligence," and why it's suddenly so important What machine learning can do for you: solutions for computer vision, natural language processing, prediction, and more How to use machine learning to solve real business problems -- from reducing costs through improving decision-making and introducing new products Separating hype from reality: identifying pitfalls, limitations, and misconceptions upfront Knowing enough about the technology to work effectively with your technical team Getting the data right: sourcing, collection, governance, security, and culture Solving harder problems: exploring deep learning and other advanced techniques Understanding today's machine learning software and hardware ecosystem Evaluating potential projects, and addressing workforce concerns Staffing your project, acquiring the right tools, and building a workable project plan Interpreting results -- and building an organization that can increasingly learn from data Using machine learning responsibly and ethically Preparing for tomorrow's advances The authors conclude with five chapter-length case studies: image, text, and video analysis, chatbots, and prediction applications. For each, they don't just present results: they also illuminate the process the company undertook, and the pitfalls it overcame along the way.
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Researchers in the evolving fields of artificial intelligence and information systems are constantly presented with new challenges. Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications provides both researchers and professionals with the latest knowledge applied to customized logic systems, agent-based approaches to modeling, and human-based models. Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications presents the recent advances in multi-mobile agent systems, the product development process, fuzzy logic systems, neural networks, and ambient intelligent environments among many other innovations in this exciting field.