Download Free Innovation In Agricultural Robotics For Precision Agriculture Book in PDF and EPUB Free Download. You can read online Innovation In Agricultural Robotics For Precision Agriculture and write the review.

This book provides a review of the state-of-the-art of agricultural robotics in different aspects of PA, the goals, and the gaps. The book introduces the area of Agricultural Robotics for Precision Agriculture (PA) specifically the conditions and limitations for implementing robots in this field and presents the concepts, principles, required abilities, components, characteristics and performance measures, conditions, and rules for robots in PA.
This book is a collection of papers presented at XIV International Scientific Conference “INTERAGROMASH 2021”, held at Don State Technical University, Rostov-on-Don, Russia, during 24–26 February 2021. The research results presented in this book cover applications of unmanned aerial systems, satellite-based applications for precision agriculture, proximal and remote sensing of soil and crop, spatial analysis, variable-rate technology, embedded sensing systems, drainage optimization and variable rate irrigation, wireless sensor networks, Internet of things, robotics, guidance and automation, software and mobile apps for precision agriculture, decision support for precision agriculture and data mining for precision agriculture.
This book presents cases from different countries with a main focus on the perspectives of using precision farming in Europe. Divided into 12 chapters it addresses some of the most recent developments and aspects of precision farming. The intention of this book is to provide an overview of some of the most promising technologies with precision agriculture from an economic point of view. Each chapter has been put together so that it can be read individually should the reader wish to focus on one particular topic. Precision Farming as a farm technology benefits from large-scale advantages due to relatively high investment costs and is primarily adopted on farms with medium to large field areas.
Sensing Approaches for Precision Agriculture aims to bring together the ‘state of the art’ of the most popular sensing techniques and the current state of research on the application of sensors in Precision Agriculture (PA). Sensing is of great value in PA because it provides cheap and immediate data for management. This book gives a broad overview of sensing in PA and a coherent introduction for new professionals and research scientists. Readers are introduced to the potential applications of a range of different sensors, how they should be used properly and their limitations for use in PA. Chapters on specific topics and case studies provide depth and enable implementation of the methods by users. A general introduction about sensing techniques in PA is followed by Chapters 2–9 on the most important specific techniques in sensing and Chapters 10–13 include mini-case studies, each showing cutting-edge applications for different sensing methods. Finally, there is an Epilogue on how we expect sensors and analysis to develop.
This book contains original and fundamental research papers in the following areas: engineering technologies for precision agriculture, agricultural systems management and digitalization in agriculture, logistics in agriculture, and other topics. Selected materials of the largest regional scientific event—INTERAGROMASH 2021 conference–included in this book present the results of the latest research in the areas of precision agriculture and agricultural machinery industry. The book is aimed for professionals and practitioners, for researchers, scholars, and producers. The materials presented here are used in the educational process at specific agricultural universities or during vocational training at enterprises and become an indispensable helper to farm managers in making the best agronomic decisions. The book is also useful for representatives of regional authorities, as it gives an idea of existing high-tech solutions for agriculture.
Over the past few decades, extensive research has been conducted on the applications of agricultural robots and automation to a variety of field and greenhouse operations, and technical fundamentals and their feasibility have also been widely demonstrated. Due to the unstructured environment, adverse interference and complicated and diversified operation process are the key of blocking its commercialization in robotic agricultural operations. Because of the development of automation techniques, smart sensors, and information techniques, some types of agricultural robots have achieved considerable success in recent years. This book intends to provide the reader with a comprehensive overview of the current state of the art in agricultural robots, fundamentals, and applications in robotic agricultural operations.
Agricultural Internet of Things and Decision Support for Smart Farming reveals how a set of key enabling technologies (KET) related to agronomic management, remote and proximal sensing, data mining, decision-making and automation can be efficiently integrated in one system. Chapters cover how KETs enable real-time monitoring of soil conditions, determine real-time, site-specific requirements of crop systems, help develop a decision support system (DSS) aimed at maximizing the efficient use of resources, and provide planning for agronomic inputs differentiated in time and space. This book is ideal for researchers, academics, post-graduate students and practitioners who want to embrace new agricultural technologies. - Presents the science behind smart technologies for agricultural management - Reveals the power of data science and how to extract meaningful insights from big data on what is most suitable based on individual time and space - Proves how advanced technologies used in agriculture practices can become site-specific, locally adaptive, operationally feasible and economically affordable
Data Science for Agricultural Innovation and Productivity explores the transformation of agriculture through data-driven practices. This comprehensive book delves into the intersection of data science and farming, offering insights into the potential of big data analytics, machine learning, and IoT integration. Readers will find a wide range of topics covered in 10 chapters, including smart farming, AI applications, hydroponics, and robotics. Expert contributors, including researchers, practitioners, and academics in the fields of data science and agriculture, share their knowledge to provide readers with up-to-date insights and practical applications. The interdisciplinary emphasis of the book gives a well-rounded view of the subject. With real-world examples and case studies, this book demonstrates how data science is being successfully applied in agriculture, inspiring readers to explore new possibilities and contribute to the ongoing transformation of the agricultural sector. Sustainability and future outlook are the key themes, as the book explores how data science can promote environmentally conscious agricultural practices while addressing global food security concerns. Key Features: - Focus on data-driven agricultural practices - Comprehensive coverage of modern farming topics with an interdisciplinary perspective - Expert insights - Sustainability and future outlook -Highlights practical applications Data Science for Agricultural Innovation and Productivity is an essential resource for researchers, data scientists, farmers, agricultural technologists, students, educators, and anyone with an interest in the future of farming through data-driven agriculture.
The agricultural industry is dealing with enormous challenges across the globe, including the limited availability of arable lands and fresh water, as well as the effect of climate change. Machinery plays a crucial role in agriculture and farming systems, in order to feed the world’s growing population. In the last decade, we have witnessed major advances in agricultural machinery and technologies, particularly as manufacturers and researchers develop and apply various novel ways of automation as well as the data and information gathering and analyzing capabilities of their machinery. This book presents the state-of-the-art information on the important innovations in the agricultural and horticultural industry. It reviews and presents different novel technologies and implementation of these technologies to optimize farming processes and food production. There are four sections, each addressing a specific area of development. Section I discusses the recent development of farm machinery and technology. Section II focuses on water and irrigation engineering. Section III covers harvesting and post-harvest technology. Section IV describes computer modelling and simulation. Each section highlights current industry trends and latest research progress. This book is ideal for those working in or are associated with the fields of agriculture, agri-food chain and technology development and promotion.
Over the past century, mechanization has been an important means for optimizing resource utilization, improving worker health and safety and reducing labor requirements in farming while increasing productivity and quality of 4F (Food, Fuel, Fiber, Feed). Recognizing this contribution, agricultural mechanization was considered as one of the top ten engineering achievements of 20th century by the National Academy of Engineering. Accordingly farming communities have adopted increasing level of automation and robotics to further improve the precision management of crops (including input resources), increase productivity and reduce farm labor beyond what has been possible with conventional mechanization technologies. It is more important than ever to continue to develop and adopt novel automation and robotic solutions into farming so that some of the most complex agricultural tasks, which require huge amount of seasonal labor such as fruit and vegetable harvesting, could be automated while meeting the rapidly increasing need for 4F. In addition, continual innovation in and adoption of agricultural automation and robotic technologies is essential to minimize the use of depleting resources including water, minerals and other chemicals so that sufficient amount of safe and healthy food can be produced for current generation while not compromising the potential for the future generation. This book aims at presenting the fundamental principles of various aspects of automation and robotics as they relate to production agriculture (the branch of agriculture dealing with farming operations from field preparation to seeding, to harvesting and field logistics). The building blocks of agricultural automation and robotics that are discussed in the book include sensing and machine vision, control, guidance, manipulation and end-effector technologies. The fundamentals and operating principles of these technologies are explained with examples from cutting-edge research and development currently going on around the word. This book brings together scientists, engineers, students and professionals working in these and related technologies to present their latest examples of agricultural automation and robotics research, innovation and development while explaining the fundamentals of the technology. The book, therefore, benefits those who wish to develop novel agricultural engineering solutions and/or to adopt them in the future. .