Download Free Infrared Absorption Spectroscopy Of Carbon Monoxide On Nickel Films Book in PDF and EPUB Free Download. You can read online Infrared Absorption Spectroscopy Of Carbon Monoxide On Nickel Films and write the review.

The observation of the vibrational spectra of adsorbed species provides one of the most incisive methods for und erst an ding chemical and physical phenomena on surfaces. At the present time, many approaches may be applied to studies of molecular vibrations on surfaces. Some of these are used on high-area solids of technological importance (e.g., heterogeneous catalysts) while others are applied to single-crystal substrates to gain better understanding under conditions of controlled surface structure. This book has attempted to bring together in one place a discussion of the major methods used to measure vibrational spectra of surface species. The emphasis is on basic concepts and experimental methods rather than a current survey of the extensive literature in this field. Two introductory chapters describe the basic theoretical aspects of vibrational spectroscopy on surfaces, dealing with normal modes and excitation mechanisms in vibrational spectroscopy. The remaining seven chapters deal with various methods employed to observe surface vibra tions. These are arranged in an order that first treats the use of various methods on surfaces that are not of the single-crystal type. It is in this area that the field first got started in the late 1940s with pioneering work by Terenin and others in the Soviet Union, and by Eisehens and others in the United States in the 1950s. The last four chapters deal with relatively recent methods that permit vibrational studies to be made on single crystal substrates.
Chemisorption and Reactions on Metallic Films, Volume 1 is a six-chapter text that describes the role of evaporated metal films in advancing the understanding of the metal-gas interface chemistry. Chapter 1 presents electron microscopy and diffraction studies and their contributions in elucidating the growth and structure of polycrystalline and epitaxially grown films. Chapter 2 describes the techniques of preparation and characterization of metallic films and examines the heats of adsorption, electrical conductivity, surface area, and sticking probabilities of such films. Chapter 3 discusses the strength of pairwise interactions; the influence of the intermetallic bond on the equilibrium shape of metal crystallites; the bonding of individual metal atoms to different crystallographic planes; the interaction of metal atoms and crystallites with non-conducting substrates; and the effects of residual gases on this interaction. Chapters 4 and 5 address the adsorption of metallic films, with an emphasis on general trends in adsorptive and electronic properties of bulk metals. These chapters also discuss the effects of adsorption on the electrical conductance of island-like and coherent films and on the ferromagnetic properties of films. Chapter 6 evaluates the application of infrared spectroscopy to the studies of the surfaces of metal films and the use of the available infrared spectroscopic data in reconciling the results of adsorption studies on oxide-supported metal particles with those obtained with clean evaporated metal films prepared under ultra high vacuum conditions. Research scientists and graduate students who are interested in the fundamentals of adsorption and catalysis will find this volume invaluable.
The Organic Chemistry of Nickel, Volume I: Organonickel Complexes is devoted to a description of the organonickel complexes. The major goal is to provide a reference work, and for this reason a conventional layout has been adopted with separate chapters devoted to each type of organic ligand. In the interest of readability, known compounds have been assembled in tables at the end of each chapter, thereby allowing the text to be used for discussions of the general chemistry involved and to highlight the special reactions associated with nickel. Conscious of the needs of organometallic chemists, the authors included systems in which no nickel-carbon bond is involved. Among these is a chapter on the tetrakisligand nickel complexes and sections on dioxygen and azobenzene complexes. The nitrosyl complexes and complexes containing a metal-metal bond—topics frequently considered to be part of the domain of the organometallic chemist—have not received individual attention. Tables of the observed bond distances in organonickel complexes are provided as an Appendix; a short list of the more important review articles relevant to each organic ligand can be found at the end of each chapter.
Proceedings of the Society are included in v. 1-59, 1879-1937.