Download Free Information Uncertainty And Fusion Book in PDF and EPUB Free Download. You can read online Information Uncertainty And Fusion and write the review.

As we stand at the precipice of the twenty first century the ability to capture and transmit copious amounts of information is clearly a defining feature of the human race. In order to increase the value of this vast supply of information we must develop means for effectively processing it. Newly emerging disciplines such as Information Engineering and Soft Computing are being developed in order to provide the tools required. Conferences such as the International Conference on Information Processing and ManagementofUncertainty in Knowledge-based Systems (IPMU) are being held to provide forums in which researchers can discuss the latest developments. The recent IPMU conference held at La Sorbonne in Paris brought together some of the world's leading experts in uncertainty and information fusion. In this volume we have included a selection ofpapers from this conference. What should be clear from looking at this volume is the number of different ways that are available for representing uncertain information. This variety in representational frameworks is a manifestation of the different types of uncertainty that appear in the information available to the users. Perhaps, the representation with the longest history is probability theory. This representation is best at addressing the uncertainty associated with the occurrence of different values for similar variables. This uncertainty is often described as randomness. Rough sets can be seen as a type of uncertainty that can deal effectively with lack of specificity, it is a powerful tool for manipulating granular information.
Addressing recent challenges and developments in this growing field, Multisensor Data Fusion Uncertainty Theory first discusses basic questions such as: Why and when is multiple sensor fusion necessary? How can the available measurements be characterized in such a case? What is the purpose and the specificity of information fusion processing in multiple sensor systems? Considering the different uncertainty formalisms, a set of coherent operators corresponding to the different steps of a complete fusion process is then developed, in order to meet the requirements identified in the first part of the book.
This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.
Presents research on methods for heterogeneous information fusion--combining data that are qualitative, subjective, fuzzy, ambiguous, contradictory, and even deceptive, in order to form a realistic assessment of threat in a counterterrorism context.
This book presents a contemporary view of the role of information quality in information fusion and decision making, and provides a formal foundation and the implementation strategies required for dealing with insufficient information quality in building fusion systems for decision making. Information fusion is the process of gathering, processing, and combining large amounts of information from multiple and diverse sources, including physical sensors to human intelligence reports and social media. That data and information may be unreliable, of low fidelity, insufficient resolution, contradictory, fake and/or redundant. Sources may provide unverified reports obtained from other sources resulting in correlations and biases. The success of the fusion processing depends on how well knowledge produced by the processing chain represents reality, which in turn depends on how adequate data are, how good and adequate are the models used, and how accurate, appropriate or applicable prior and contextual knowledge is. By offering contributions by leading experts, this book provides an unparalleled understanding of the problem of information quality in information fusion and decision-making for researchers and professionals in the field.
The International Conference on Information Processing and Management of - certainty in Knowledge-Based Systems, IPMU, is organized every two years with the aim of bringing together scientists working on methods for the management of uncertainty and aggregation of information in intelligent systems. Since 1986, this conference has been providing a forum for the exchange of ideas between th theoreticians and practitioners working in these areas and related ?elds. The 13 IPMU conference took place in Dortmund, Germany, June 28–July 2, 2010. This volume contains 79 papers selected through a rigorous reviewing process. The contributions re?ect the richness of research on topics within the scope of the conference and represent several important developments, speci?cally focused on theoretical foundations and methods for information processing and management of uncertainty in knowledge-based systems. We were delighted that Melanie Mitchell (Portland State University, USA), Nihkil R. Pal (Indian Statistical Institute), Bernhard Sch ̈ olkopf (Max Planck I- titute for Biological Cybernetics, Tubing ̈ en, Germany) and Wolfgang Wahlster (German Research Center for Arti?cial Intelligence, Saarbruc ̈ ken) accepted our invitations to present keynote lectures. Jim Bezdek received the Kamp ́ede F ́ eriet Award, granted every two years on the occasion of the IPMU conference, in view of his eminent research contributions to the handling of uncertainty in clustering, data analysis and pattern recognition.
This report is a summary of a NASA/ONR-sponsored workshop, Combating Uncertainty with Fusion, that was organized in Woods Hole in April 2002. The main purpose of the workshop was to address a class of difficult computational problems that are characterized by combining large amounts of data or datasets from diverse sources that are related in complex, stochastic, and poorly understood ways. The intent was to determine whether understanding of biological fusion processes could provide guidance to the development of robust algorithms that would alleviate the difficulties encountered in a variety of application areas including the Earth Observation System.
The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut