Download Free Information Spectrum Methods In Information Theory Book in PDF and EPUB Free Download. You can read online Information Spectrum Methods In Information Theory and write the review.

From the reviews: "This book nicely complements the existing literature on information and coding theory by concentrating on arbitrary nonstationary and/or nonergodic sources and channels with arbitrarily large alphabets. Even with such generality the authors have managed to successfully reach a highly unconventional but very fertile exposition rendering new insights into many problems." -- MATHEMATICAL REVIEWS
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Modern, current, and future communications/processing aspects motivate basic information-theoretic research for a wide variety of systems for which we do not have the ultimate theoretical solutions (for example, a variety of problems in network information theory as the broadcast/interference and relay channels, which mostly remain unsolved in terms of determining capacity regions and the like). Technologies such as 5/6G cellular communications, Internet of Things (IoT), and mobile edge networks, among others, not only require reliable rates of information measured by the relevant capacity and capacity regions, but are also subject to issues such as latency vs. reliability, availability of system state information, priority of information, secrecy demands, energy consumption per mobile equipment, sharing of communications resources (time/frequency/space), etc. This book, composed of a collection of papers that have appeared in the Special Issue of the Entropy journal dedicated to “Information Theory for Data Communications and Processing”, reflects, in its eleven chapters, novel contributions based on the firm basic grounds of information theory. The book chapters address timely theoretical and practical aspects that constitute both interesting and relevant theoretical contributions, as well as direct implications for modern current and future communications systems.
Information Theory is studied from the following points of view: (1) the theory of entropy as amount of information; (2) the mathematical structure of information sources (probability measures); and (3) the theory of information channels. Shannon entropy and Kolmogorov-Sinai entropy are defined and their basic properties are examined, where the latter entropy is extended to be a linear functional on a certain set of measures. Ergodic and mixing properties of stationary sources are studied as well as AMS (asymptotically mean stationary) sources.The main purpose of this book is to present information channels in the environment of functional analysis and operator theory as well as probability theory. Ergodic, mixing, and AMS channels are also considered in detail with some illustrations. In this second edition, channel operators are studied in many aspects, which generalize ordinary channels. Also Gaussian channels are considered in detail together with Gaussian measures on a Hilbert space. The Special Topics chapter deals with features such as generalized capacity, channels with an intermediate noncommutative system, and von Neumann algebra method for channels. Finally, quantum (noncommutative) information channels are examined in an independent chapter, which may be regarded as an introduction to quantum information theory. Von Neumann entropy is introduced and its generalization to a C*-algebra setting is given. Basic results on quantum channels and entropy transmission are also considered.
The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.
If the carriers of information are governed by quantum mechanics, new principles for information processing apply. This graduate textbook introduces the underlying mathematical theory for quantum communication, computation, and cryptography. A focus lies on the concept of quantum channels, understanding figures of merit, e.g. fidelities and entropies in the quantum world, and understanding the interrelationship of various quantum information processing protocols.
This comprehensive treatment of network information theory and its applications provides the first unified coverage of both classical and recent results. With an approach that balances the introduction of new models and new coding techniques, readers are guided through Shannon's point-to-point information theory, single-hop networks, multihop networks, and extensions to distributed computing, secrecy, wireless communication, and networking. Elementary mathematical tools and techniques are used throughout, requiring only basic knowledge of probability, whilst unified proofs of coding theorems are based on a few simple lemmas, making the text accessible to newcomers. Key topics covered include successive cancellation and superposition coding, MIMO wireless communication, network coding, and cooperative relaying. Also covered are feedback and interactive communication, capacity approximations and scaling laws, and asynchronous and random access channels. This book is ideal for use in the classroom, for self-study, and as a reference for researchers and engineers in industry and academia.
This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics – all of which are addressed here – made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.
A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.