Download Free Information Governance Principles And Practices For A Big Data Landscape Book in PDF and EPUB Free Download. You can read online Information Governance Principles And Practices For A Big Data Landscape and write the review.

This IBM® Redbooks® publication describes how the IBM Big Data Platform provides the integrated capabilities that are required for the adoption of Information Governance in the big data landscape. As organizations embark on new use cases, such as Big Data Exploration, an enhanced 360 view of customers, or Data Warehouse modernization, and absorb ever growing volumes and variety of data with accelerating velocity, the principles and practices of Information Governance become ever more critical to ensure trust in data and help organizations overcome the inherent risks and achieve the wanted value. The introduction of big data changes the information landscape. Data arrives faster than humans can react to it, and issues can quickly escalate into significant events. The variety of data now poses new privacy and security risks. The high volume of information in all places makes it harder to find where these issues, risks, and even useful information to drive new value and revenue are. Information Governance provides an organization with a framework that can align their wanted outcomes with their strategic management principles, the people who can implement those principles, and the architecture and platform that are needed to support the big data use cases. The IBM Big Data Platform, coupled with a framework for Information Governance, provides an approach to build, manage, and gain significant value from the big data landscape.
Managing information within the enterprise has always been a vital and important task to support the day-to-day business operations and to enable analysis of that data for decision making to better manage and grow the business for improved profitability. To do all that, clearly the data must be accurate and organized so it is accessible and understandable to all who need it. That task has grown in importance as the volume of enterprise data has been growing significantly (analyst estimates of 40 - 50% growth per year are not uncommon) over the years. However, most of that data has been what we call "structured" data, which is the type that can fit neatly into rows and columns and be more easily analyzed. Now we are in the era of "big data." This significantly increases the volume of data available, but it is in a form called "unstructured" data. That is, data from sources that are not as easily organized, such as data from emails, spreadsheets, sensors, video, audio, and social media sites. There is valuable information in all that data but it calls for new processes to enable it to be analyzed. All this has brought with it a renewed and critical need to manage and organize that data with clarity of meaning, understandability, and interoperability. That is, you must be able to integrate this data when it is from within an enterprise but also importantly when it is from many different external sources. What is described here has been and is being done to varying extents. It is called "information governance." Governing this information however has proven to be challenging. But without governance, much of the data can be less useful and perhaps even used incorrectly, significantly impacting enterprise decision making. So we must also respect the needs for information security, consistency, and validity or else suffer the potential economic and legal consequences. Implementing sound governance practices needs to be an integral part of the information control in our organizations. This IBM® Redbooks® publication focuses on the building blocks of a solid governance program. It examines some familiar governance initiative scenarios, identifying how they underpin key governance initiatives, such as Master Data Management, Quality Management, Security and Privacy, and Information Lifecycle Management. IBM Information Management and Governance solutions provide a comprehensive suite to help organizations better understand and build their governance solutions. The book also identifies new and innovative approaches that are developed by IBM practice leaders that can help as you implement the foundation capabilities in your organizations.
This book presents and discusses the main strategic and organizational challenges posed by Big Data and analytics in a manner relevant to both practitioners and scholars. The first part of the book analyzes strategic issues relating to the growing relevance of Big Data and analytics for competitive advantage, which is also attributable to empowerment of activities such as consumer profiling, market segmentation, and development of new products or services. Detailed consideration is also given to the strategic impact of Big Data and analytics on innovation in domains such as government and education and to Big Data-driven business models. The second part of the book addresses the impact of Big Data and analytics on management and organizations, focusing on challenges for governance, evaluation, and change management, while the concluding part reviews real examples of Big Data and analytics innovation at the global level. The text is supported by informative illustrations and case studies, so that practitioners can use the book as a toolbox to improve understanding and exploit business opportunities related to Big Data and analytics.
This innovative new textbook, co-authored by an established academic and a leading practitioner, is the first to bring together issues of cloud computing, business intelligence and big data analytics in order to explore how organisations use cloud technology to analyse data and make decisions. In addition to offering an up-to-date exploration of key issues relating to data privacy and ethics, information governance, and the future of analytics, the text describes the options available in deploying analytic solutions to the cloud and draws on real-world, international examples from companies such as Rolls Royce, Lego, Volkswagen and Samsung. Combining academic and practitioner perspectives that are crucial to the understanding of this growing field, Business Analytics acts an ideal core text for undergraduate, postgraduate and MBA modules on Big Data, Business and Data Analytics, and Business Intelligence, as well as functioning as a supplementary text for modules in Marketing Analytics. The book is also an invaluable resource for practitioners and will quickly enable the next generation of 'Information Builders' within organisations to understand innovative cloud based-analytic solutions.
This book is a collection of best selected papers presented at the International Conference on Inventive Computation and Information Technologies (ICICIT 2020), organized during 24–25 September 2020. The book includes papers in the research area of information sciences and communication engineering. The book presents novel and innovative research results in theory, methodology and applications of communication engineering and information technologies.
Software Architecture for Big Data and the Cloud is designed to be a single resource that brings together research on how software architectures can solve the challenges imposed by building big data software systems. The challenges of big data on the software architecture can relate to scale, security, integrity, performance, concurrency, parallelism, and dependability, amongst others. Big data handling requires rethinking architectural solutions to meet functional and non-functional requirements related to volume, variety and velocity. The book's editors have varied and complementary backgrounds in requirements and architecture, specifically in software architectures for cloud and big data, as well as expertise in software engineering for cloud and big data. This book brings together work across different disciplines in software engineering, including work expanded from conference tracks and workshops led by the editors. - Discusses systematic and disciplined approaches to building software architectures for cloud and big data with state-of-the-art methods and techniques - Presents case studies involving enterprise, business, and government service deployment of big data applications - Shares guidance on theory, frameworks, methodologies, and architecture for cloud and big data
The era of rapidly progressing technology we live in generates vast amounts of data; however, the challenge exists in understanding how to aggressively monitor and make sense of this data. Without a better understanding of how to collect and manage such large data sets, it becomes increasingly difficult to successfully utilize them. Managing Big Data Integration in the Public Sector is a pivotal reference source for the latest scholarly research on the application of big data analytics in government contexts and identifies various strategies in which big data platforms can generate improvements within that sector. Highlighting issues surrounding data management, current models, and real-world applications, this book is ideally designed for professionals, government agencies, researchers, and non-profit organizations interested in the benefits of big data analytics applied in the public sphere.
This book delves into the concept of data as a critical enterprise asset needed for informed decision making, compliance, regulatory reporting and insights into trends, behaviors, performance and patterns. With good data being key to staying ahead in a competitive market, enterprises capture and store exponential volumes of data. Considering the business impact of data, there needs to be adequate management around it to derive the best value. Data governance is one of the core data management related functions. However, it is often overlooked, misunderstood or confused with other terminologies and data management functions. Given the pervasiveness of data and the importance of data, this book provides comprehensive understanding of the business drivers for data governance and benefits of data governance, the interactions of data governance function with other data management functions and various components and aspects of data governance that can be facilitated by technology and tools, the distinction between data management tools and data governance tools, the readiness checks to perform before exploring the market to purchase a data governance tool, the different aspects that must be considered when comparing and selecting the appropriate data governance technologies and tools from large number of options available in the marketplace and the different market players that provide tools for supporting data governance. This book combines the data and data governance knowledge that the author has gained over years of working in different industrial and research programs and projects associated with data, processes and technologies with unique perspectives gained through interviews with thought leaders and data experts. This book is highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge and get guidance on implementing data governance in their own data initiatives.
Data-intensive systems are software applications that process and generate Big Data. Data-intensive systems support the use of large amounts of data strategically and efficiently to provide intelligence. For example, examining industrial sensor data or business process data can enhance production, guide proactive improvements of development processes, or optimize supply chain systems. Designing data-intensive software systems is difficult because distribution of knowledge across stakeholders creates a symmetry of ignorance, because a shared vision of the future requires the development of new knowledge that extends and synthesizes existing knowledge. Knowledge Management in the Development of Data-Intensive Systems addresses new challenges arising from knowledge management in the development of data-intensive software systems. These challenges concern requirements, architectural design, detailed design, implementation and maintenance. The book covers the current state and future directions of knowledge management in development of data-intensive software systems. The book features both academic and industrial contributions which discuss the role software engineering can play for addressing challenges that confront developing, maintaining and evolving systems;data-intensive software systems of cloud and mobile services; and the scalability requirements they imply. The book features software engineering approaches that can efficiently deal with data-intensive systems as well as applications and use cases benefiting from data-intensive systems. Providing a comprehensive reference on the notion of data-intensive systems from a technical and non-technical perspective, the book focuses uniquely on software engineering and knowledge management in the design and maintenance of data-intensive systems. The book covers constructing, deploying, and maintaining high quality software products and software engineering in and for dynamic and flexible environments. This book provides a holistic guide for those who need to understand the impact of variability on all aspects of the software life cycle. It leverages practical experience and evidence to look ahead at the challenges faced by organizations in a fast-moving world with increasingly fast-changing customer requirements and expectations.