Download Free Information Dynamics Book in PDF and EPUB Free Download. You can read online Information Dynamics and write the review.

In this book we develop various mathematical models of information dynamics, I -dynamics (including the process of thinking), based on methods of classical and quantum physics. The main aim of our investigations is to describe mathematically the phenomenon of consciousness. We would like to realize a kind of Newton-Descartes program (corrected by the lessons of statistical and quantum mechanics) for information processes. Starting from the ideas of Newton and Descartes, in physics there was developed an adequate description of the dynamics of material systems. We would like to develop an analogous mathematical formalism for information and, in particular, mental processes. At the beginning of the 21st century it is clear that it would be impossible to create a deterministic model for general information processes. A deterministic model has to be completed by a corresponding statistical model of information flows and, in particular, flows of minds. It might be that such an information statistical model should have a quantum-like structure.
This book aims to present an information-theoretical approach to thermodynamics and its generalisations. On the one hand, it generalises the concept of `information thermodynamics' to that of `information dynamics' in order to stress applications outside thermal phenomena. On the other hand, it is a synthesis of the dynamics of state change and the theory of complexity, which provide a common framework to treat both physical and nonphysical systems together. Both classical and quantum systems are discussed, and two appendices are included to explain principal definitions and some important aspects of the theory of Hilbert spaces and operator algebras. The concept of higher-order temperatures is explained and applied to biological and linguistic systems. The theory of open systems is presented in a new, much more general form. Audience: This volume is intended mainly for theoretical and mathematical physicists, but also for mathematicians, experimental physicists, physical chemists, theoretical biologists, communication engineers, and all those interested in entropy and open systems. It can also be recommended as a supplementary text.
This book focuses on the development of a theory of info-dynamics to support the theory of info-statics in the general theory of information. It establishes the rational foundations of information dynamics and how these foundations relate to the general socio-natural dynamics from the primary to the derived categories in the universal existence and from the potential to the actual in the ontological space. It also shows how these foundations relate to the general socio-natural dynamics from the potential to the possible to give rise to the possibility space with possibilistic thinking; from the possible to the probable to give rise to possibility space with probabilistic thinking; and from the probable to the actual to give rise to the space of knowledge with paradigms of thought in the epistemological space. The theory is developed to explain the general dynamics through various transformations in quality-quantity space in relation to the nature of information flows at each variety transformation. The theory explains the past-present-future connectivity of the evolving information structure in a manner that illuminates the transformation problem and its solution in the never-ending information production within matter-energy space under socio-natural technologies to connect the theory of info-statics, which in turn presents explanations to the transformation problem and its solution. The theoretical framework is developed with analytical tools based on the principle of opposites, systems of actual-potential polarities, negative-positive dualities under different time-structures with the use of category theory, fuzzy paradigm of thought and game theory in the fuzzy-stochastic cost-benefit space. The rational foundations are enhanced with categorial analytics. The value of the theory of info-dynamics is demonstrated in the explanatory and prescriptive structures of the transformations of varieties and categorial varieties at each point of time and over time from parent–offspring sequences. It constitutes a general explanation of dynamics of information-knowledge production through info-processes and info-processors induced by a socio-natural infinite set of technologies in the construction–destruction space.
Presents a broad examination of the nature of virtual worlds and the potential they provide in managing and expressing information practices through that medium, grounding information professionals and students of new media in the fundamental elements of virtual worlds and online gaming. The book details the practical issues in finding and using information in virtual environments and presents a general theory of librarianship as it relates to virtual gaming worlds. It is encompassed by a set of best practice methods that libraries can effectively execute in their own environments, meeting the needs of this new generation of library user, and explores ways in which information literacy can be approached in virtual worlds. Final chapters examine how conventional information evaluation skills work falls short in virtual worlds online. - Maps out areas of good practice and technique for information professionals and librarians serving in virtual communities - Provides a clear foundation with appropriate theory for understanding information in virtual worlds - Treats virtual worlds as 'real environments' and observes the behaviour of actors within them
This book develops a view of logic as a theory of information-driven agency and intelligent interaction between many agents - with conversation, argumentation and games as guiding examples. It provides one uniform account of dynamic logics for acts of inference, observation, questions and communication, that can handle both update of knowledge and revision of beliefs. It then extends the dynamic style of analysis to include changing preferences and goals, temporal processes, group action and strategic interaction in games. Throughout, the book develops a mathematical theory unifying all these systems, and positioning them at the interface of logic, philosophy, computer science and game theory. A series of further chapters explores repercussions of the 'dynamic stance' for these areas, as well as cognitive science.
The nature of distributed computation in complex systems has often been described in terms of memory, communication and processing. This thesis presents a complete information-theoretic framework to quantify these operations on information (i.e. information storage, transfer and modification), and in particular their dynamics in space and time. The framework is applied to cellular automata, and delivers important insights into the fundamental nature of distributed computation and the dynamics of complex systems (e.g. that gliders are dominant information transfer agents). Applications to several important network models, including random Boolean networks, suggest that the capability for information storage and coherent transfer are maximised near the critical regime in certain order-chaos phase transitions. Further applications to study and design information structure in the contexts of computational neuroscience and guided self-organisation underline the practical utility of the techniques presented here.
What shapes the role of Information and Communication Technologies in our everyday life? Despite the speed with which information and communication technologies such as the PC, mobile telephone and internet have found their way into society, there remains a good deal of debate surrounding their adoption and use. Through empirical studies covering a broad range of everyday life and work settings, this volume provides grounded insights into the social dynamics influencing how ICTs are both shaped and experienced. Specifically, the book examines the contributions of diverse disciplines to our understanding of these processes, the symbolic nature of technologies, the influence of design on the experience of ICTs, the role of users in influencing that design, the social constraints affecting the use of those technologies, and strategies for evaluating the social consequences of ICT innovations.
Models of Science Dynamics aims to capture the structure and evolution of science, the emerging arena in which scholars, science and the communication of science become themselves the basic objects of research. In order to capture the essence of phenomena as diverse as the structure of co-authorship networks or the evolution of citation diffusion patterns, such models can be represented by conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, or computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive study of the topic. This volume fills this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented cover stochastic and statistical models, system-dynamics approaches, agent-based simulations, population-dynamics models, and complex-network models. The book comprises an introduction and a foundational chapter that defines and operationalizes terminology used in the study of science, as well as a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of remaining challenges for future science models and their relevance for science and science policy.
Emerging business models, value configurations, and information technologies interact over time to create competitive advantage. Modern information technology has to be studied, understood, and applied along the time dimension of months and years, where changes are the rule. Such changes created by interactions between business elements and resources are very well suited for system dynamics modeling. Business Dynamics in Information Technology presents business-technology alignment processes, business-technology interaction processes, and business-technology decision processes, serving the purpose of helping the reader study information technology from a dynamic, rather than a static, perspective. By introducing two simple tools from system dynamic modeling - causal loops and reference modes - the dynamic perspective will become important to both students and practitioners in the future.
This book offers a self-contained overview of the entropic approach to quantum dynamical systems. In it, complexity in quantum dynamics is addressed by comparison with the classical ergodic, information, and algorithmic complexity theories.