Download Free Informal Mathematics And Science Education Book in PDF and EPUB Free Download. You can read online Informal Mathematics And Science Education and write the review.

This edited volume explores key areas of interests in Singapore math and science education including issues on teacher education, pedagogy, curriculum, assessment, teaching practices, applied learning, ecology of learning, talent grooming, culture of science and math, vocational education and STEM. It presents to policymakers and educators a clear picture of the education scene in Singapore and insights into the role of math and science education in helping the country excel beyond international studies such as PISA, the pedagogical and curricula advancements in math and science learning, and the research and practices that give Singaporean students the competitive edge in facing the uncertain and challenging landscape of the future.
'The book provides a concise, informative, comprehensive, and current overview of key issues in the field of science communication, the background of science communication, its theoretical bases, and its links to science communication practice. Especially the link between theory / research and practice is very well developed in the book and in the individual chapters. I think that is valuable for both readers new to the field of science communication, but also for those who identify with only one of these sides … it is indeed a comprehensive and concise overview, convincing in its aim to link theory, research, and practice and I will definitely use it for my lectures on science communication.'JCOM - Journal of Science CommunicationA concise, coherent and easily readable textbook about the field of science communication, connecting the practice of science communicators with theory. In the book, recent trends and shifts in the field resonate, such as the transition from telling about science to interacting with the public and the importance of science communication in health and environmental communication. The chapters have been written by experts in their disciplines, coming from philosophy of science and communication studies to health communication and science journalism. Cases from around the world illustrate science communication in practice. The book provides a broad, up-to-date and coherent introduction to science communication for both, students of science communication and related fields, as well as professionals.Related Link(s)
Practitioners in informal science settings-museums, after-school programs, science and technology centers, media enterprises, libraries, aquariums, zoos, and botanical gardens-are interested in finding out what learning looks like, how to measure it, and what they can do to ensure that people of all ages, from different backgrounds and cultures, have a positive learning experience. Surrounded by Science: Learning Science in Informal Environments, is designed to make that task easier. Based on the National Research Council study, Learning Science in Informal Environments: People, Places, and Pursuits, this book is a tool that provides case studies, illustrative examples, and probing questions for practitioners. In short, this book makes valuable research accessible to those working in informal science: educators, museum professionals, university faculty, youth leaders, media specialists, publishers, broadcast journalists, and many others.
This book comprises a wide range of scholarly essays introducing readers to key topics and issues in science education. Science education has become a well established field in its own right, with a vast literature, and many active areas of scholarship. Science Education: An International Course Companion offers an entry point for students seeking a sound but introductory understanding of the key perspectives and areas of thinking in science education. Each account is self-contained and offers a scholarly and research-informed introduction to a particular topic, theme, or perspective, with both citations to key literature and recommendations for more advanced reading. Science Education: An International Course Companion allows readers (such as those preparing for school science teaching, or seeking more advanced specialist qualifications) to obtain a broad familiarity with key issues across the field as well as guiding wider reading about particular topics of interest. The book therefore acts as a reader to support learning across courses in science education internationally. The broad coverage of topics is such that that the book will support students following a diverse range of courses and qualifications. The comprehensive nature of the book will allow course leaders and departments to nominate the book as the key reader to support students - their core 'course companion' in science education.
This book introduces the reader to evidence-based non-formal and informal science learning considerations (including technological and pedagogical innovations) that have emerged in and empowered the information and communications technology (ICT) era. The contributions come from diverse countries and contexts (such as hackerspaces, museums, makerspaces, after-school activities) to support a wide range of educators, practitioners, and researchers (such as K-12 teachers, learning scientists, museum curators, librarians, parents, hobbyists). The documented considerations, lessons learned, and concepts have been extracted using diverse methods, ranging from experience reports and conceptual methods to quantitative studies and field observation using qualitative methods. This volume attempts to support the preparation, set-up, implementation, but also evaluation of informal learning activities to enhance science education.
Each new headline about American students' poor performance in math and science leads to new calls for reform in teaching. Education Teachers of Science, Mathematics, and Technology puts the whole picture together by synthesizing what we know about the quality of math and science teaching, drawing conclusions about why teacher preparation needs reform, and then outlining recommendations for accomplishing the most important goals before us. As a framework for addressing the task, the book advocates partnerships among school districts, colleges, and universities, with contributions from scientists, mathematicians, teacher educators, and teachers. It then looks carefully at the status of the education reform movement and explores the motives for raising the bar for how well teachers teach and how well students learn. Also examined are important issues in teacher professionalism: what teachers should be taught about their subjects, the utility of in-service education, the challenge of program funding, and the merits of credentialing. Professional Development Schools are reviewed and vignettes presented that describe exemplary teacher development practices.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Interest in Mathematics and Science Learning, edited by K. Ann Renninger, Martin Nieswandt, and Suzanne Hidi, is the first volume to assemble findings on the role of interest in mathematics and science learning. As the contributors illuminate across the volume's 22 chapters, interest provides a critical bridge between cognition and affect in learning and development. This volume will be useful to educators, researchers, and policy makers, especially those whose focus is mathematics, science, and technology education.
Science learning that takes place between and at the intersections of formal and informal science environments has not been systematically reviewed to offer a comprehensive understanding of the existing knowledge base. Bringing together theory and research, this volume describes the various ways in which learning science in various settings has been conceptualized as well as empirical evidence to illustrate how science learning in these settings can be supported.