Download Free Infinitesimal Geometry Of Quasiconformal And Bi Lipschitz Mappings In The Plane Book in PDF and EPUB Free Download. You can read online Infinitesimal Geometry Of Quasiconformal And Bi Lipschitz Mappings In The Plane and write the review.

This book is intended for researchers interested in new aspects of local behavior of plane mappings and their applications. The presentation is self-contained, but the reader is assumed to know basic complex and real analysis. The study of the local and boundary behavior of quasiconformal and bi-Lipschitz mappings in the plane forms the core of the book. The concept of the infinitesimal space is used to investigate the behavior of a mapping at points without differentiability. This concept, based on compactness properties, is applied to regularity problems of quasiconformal mappings and quasiconformal curves, boundary behavior, weak and asymptotic conformality, local winding properties, variation of quasiconformal mappings, and criteria of univalence. Quasiconformal and bi-Lipschitz mappings are instrumental for understanding elasticity, control theory and tomography and the book also offers a new look at the classical areas such as the boundary regularity of a conformal map. Complicated local behavior is illustrated by many examples. The text offers a detailed development of the background for graduate students and researchers. Starting with the classical methods to study quasiconformal mappings, this treatment advances to the concept of the infinitesimal space and then relates it to other regularity properties of mappings in Part II. The new unexpected connections between quasiconformal and bi-Lipschitz mappings are treated in Part III. There is an extensive bibliography.
This book is an introduction to the theory of quasiconformal and quasiregular mappings in the euclidean n-dimensional space, (where n is greater than 2). There are many ways to develop this theory as the literature shows. The authors' approach is based on the use of metrics, in particular conformally invariant metrics, which will have a key role throughout the whole book. The intended readership consists of mathematicians from beginning graduate students to researchers. The prerequisite requirements are modest: only some familiarity with basic ideas of real and complex analysis is expected.
The international conference entitled "New Trends in Approximation Theory" was held at the Fields Institute, in Toronto, from July 25 until July 29, 2016. The conference was fondly dedicated to the memory of our unique friend and colleague, André Boivin, who gave tireless service in Canada until his very last moment of his life in October 2014. The impact of his warm personality and his fine work on Complex Approximation Theory was reflected by the mathematical excellence and the wide research range of the 37 participants. In total there were 27 talks, delivered by well-established mathematicians and young researchers. In particular, 19 invited lectures were delivered by leading experts of the field, from 8 different countries. The wide variety of presentations composed a mosaic of aspects of approximation theory, highlighting interesting connections with important contemporary areas of Analysis. Primary topics discussed include application of approximation theory (isoperimetric inequalities, construction of entire order-isomorphisms, dynamical sampling); approximation by harmonic and holomorphic functions (especially uniform and tangential approximation), polynomial and rational approximation; zeros of approximants and zero-free approximation; tools used in approximation theory; approximation on complex manifolds, in product domains, and in function spaces; and boundary behaviour and universality properties of Taylor and Dirichlet series.
The monograph is devoted to the use of the moduli method in mapping theory, in particular, the meaning of direct and inverse modulus inequalities and their possible applications. The main goal is the development of a modulus technique in the Euclidean space and some metric spaces (manifolds, surfaces, quotient spaces, etc.). Particular attention is paid to the local and boundary behavior of mappings, as well as to obtaining modulus inequalities for some classes. The reader is invited to familiarize himself with all the main achievements of the author, synthesized in this book. The results presented here are of a high scientific level, are new and have no analogues in the world with such a degree of generality.
This volume contains the contributions of the participants of the 13th International ISAAC Congress 2021, held in Ghent, Belgium. The papers, written by respected international experts, address recent results in mathematics, with a special focus on analysis. The volume provides to both specialists and non-specialists an excellent source of information on current research in mathematical analysis and its various interdisciplinary applications.
Quasiregular Mappings extend quasiconformal theory to the noninjective case.They give a natural and beautiful generalization of the geometric aspects ofthe theory of analytic functions of one complex variable to Euclidean n-space or, more generally, to Riemannian n-manifolds. This book is a self-contained exposition of the subject. A braod spectrum of results of both analytic and geometric character are presented, and the methods vary accordingly. The main tools are the variational integral method and the extremal length method, both of which are thoroughly developed here. Reshetnyak's basic theorem on discreteness and openness is used from the beginning, but the proof by means of variational integrals is postponed until near the end. Thus, the method of extremal length is being used at an early stage and leads, among other things, to geometric proofs of Picard-type theorems and a defect relation, which are some of the high points of the present book.
This monograph develops a theory of continuous and differentiable functions, called monogenic functions, in the sense of Gateaux functions taking values in some vector spaces with commutative multiplication. The study of these monogenic functions in various commutative algebras leads to a discovery of new ways of solving boundary value problems in mathematical physics. The book consists of six parts: Part I presents some preliminary notions and introduces various concepts of differentiable mappings of vector spaces. Part II - V is devoted to the study of monogenic functions in various spaces with commutative multiplication, namely, three dimensional commutative algebras with two-dimensional radical, finite-dimensional commutative associative algebras, infinite-dimensional vector spaces associated with the three-dimensional Laplace equation and infinite-dimensional vector spaces associated with axial-symmetric potential fields. Part VI presents some boundary value problems for axial-symmetric potential fields and develops effective analytic methods of solving these boundary value problems with various applications in mathematical physics. Graduate students and researchers alike benefit from this book.
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
This book is devoted to the Beltrami equations that play a significant role in Geometry, Analysis and Physics and, in particular, in the study of quasiconformal mappings and their generalizations, Riemann surfaces, Kleinian groups, Teichmuller spaces, Clifford analysis, meromorphic functions, low dimensional topology, holomorphic motions, complex dynamics, potential theory, electrostatics, magnetostatics, hydrodynamics and magneto-hydrodynamics. The purpose of this book is to present the recent developments in the theory of Beltrami equations; especially those concerning degenerate and alternating Beltrami equations. The authors study a wide circle of problems like convergence, existence, uniqueness, representation, removal of singularities, local distortion estimates and boundary behavior of solutions to the Beltrami equations. The monograph contains a number of new types of criteria in the given problems, particularly new integral conditions for the existence of regular solutions to the Beltrami equations that turned out to be not only sufficient but also necessary. The most important feature of this book concerns the unified geometric approach based on the modulus method that is effectively applied to solving the mentioned problems. Moreover, it is characteristic for the book application of many new concepts as strong ring solutions, tangent dilatations, weakly flat and strongly accessible boundaries, functions of finite mean oscillations and new integral conditions that make possible to realize a more deep and refined analysis of problems related to the Beltrami equations. Mastering and using these new tools also gives essential advantages for the reader in the research of modern problems in many other domains. Every mathematics graduate library should have a copy of this book.​