Download Free Inferring Ocean Circulation During The Last Glacial Maximum And Last Deglaciation Using Data And Models Book in PDF and EPUB Free Download. You can read online Inferring Ocean Circulation During The Last Glacial Maximum And Last Deglaciation Using Data And Models and write the review.

Since the Last Glacial Maximum (LGM, ~ 20,000 years ago) air temperatures warmed, sea level rose roughly 130 meters, and atmospheric concentrations of carbon dioxide increased. This thesis combines global models and paleoceanographic observations to constrain the ocean’s role in storing and transporting heat, salt, and other tracers during this time, with implications for understanding how the modern ocean works and how it might change in the future. • By combining a kinematic ocean model with “upstream” and “downstream” deglacial oxygen isotope time series from benthic and planktonic foraminifera, I show that the data are in agreement with the modern circulation, quantify their power to infer circulation changes, and propose new data locations. • An ocean general circulation model (the MITgcm) constrained to fit LGM sea surface temperature proxy observations reveals colder ocean temperatures, greater sea ice extent, and changes in ocean mixed layer depth, and suggests that some features in the data are not robust. • A sensitivity analysis in the MITgcm demonstrates that changes in winds or in ocean turbulent transport can explain the hypothesis that the boundary between deep Atlantic waters originating from Northern and Southern Hemispheres was shallower at the LGM than it is today.
This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO2 concentrations were about 90 ppm lower, ice sheets were much more extensive, and many regions experienced significantly colder temperatures. In this thesis a novel approach to dynamical reconstruction is applied to make estimates of LGM Atlantic Ocean state that are consistent with these proxy records and with known ocean dynamics. Ocean dynamics are described with the MIT General Circulation Model in an Atlantic configuration extending from 35°S to 75°N at 1° resolution. Six LGM proxy types are used to constrain the model: four compilations of near sea surface temperatures from the MARGO project, as well as benthic isotope records of [delta]18O and [delta]13C compiled by Marchal and Curry; 629 individual proxy records are used. To improve the fit of the model to the data, a least-squares fit is computed using an algorithm based on the model adjoint (the Lagrange multiplier methodology). The adjoint is used to compute improvements to uncertain initial and boundary conditions (the control variables). As compared to previous model-data syntheses of LGM ocean state, this thesis uses a significantly more realistic model of oceanic physics, and is the first to incorporate such a large number and diversity of proxy records. A major finding is that it is possible to find an ocean state that is consistent with all six LGM proxy compilations and with known ocean dynamics, given reasonable uncertainty estimates. Only relatively modest shifts from modern atmospheric forcing are required to fit the LGM data. The estimates presented herein succesfully reproduce regional shifts in conditions at the LGM that have been inferred from proxy records, but which have not been captured in the best available LGM coupled model simulations. In addition, LGM benthic [delta]18O and [delta]13C records are shown to be consistent with a shallow but robust Atlantic meridional overturning cell, although other circulations cannot be excluded.
Ocean circulation during the last deglaciation can help to improve the understanding of the mechanisms underlying the ocean circulation. However, previous model-data comparisons suffer from indirect comparison because both reconstruction and climate model have uncertainties. To meet this challenge, my PhD work contributes to the isotope enabled Community Earth System Model (iCESM) project by developing a Neodymium (Nd) model and a Protactinium (231Pa) and Thorium (230Th) in the ocean model of CESM. With the isotope enabled ocean model (iPOP2), I investigated two scientific questions: (1) Deglacial AAIW in the Atlantic. AAIW plays important roles in the global climate system and the global ocean nutrient and carbon cycles. However, neodymium isotopic composition ([epsilon]Nd) reconstructions from different locations from the tropical Atlantic, have led to a debate on the relationship between northward penetration of AAIW into the tropical Atlantic and AMOC variability during the last deglaciation. Our results suggest a coherent response of AAIW and AMOC: when AMOC weakens, the northward penetration and transport of AAIW decreases while its depth and thickness increase. Moreover, the inconsistency among different tropical Atlantic [epsilon]Nd reconstructions is reconciled by considering their corresponding core locations and depths, which were influenced by different water masses in the past. (2) Using 18Oc to reconstruct AMOC. 18Oc gradient can be used to reconstruct density gradient, therefore the AMOC strength. 18Oc from the Florida Straits has been used to reconstruct AMOC evolution during the last deglaciation but the strength of Florida current can also be influenced by surface wind stress. Our model simulation suggests that in the western boundary, the Florida current strength is dominated by AMOC through the last deglaciation, instead of surface wind. However, in the South Atlantic, the basin-wide 18Oc contrast is decoupled from density contrast through the deglaciation in the upper ocean because of the deglacial density contrast change is dominated by salinity, which is caused by the deglacial change of AAIW. Our model suggests that 18Oc contrast across the western boundary is a good indicator for AMOC strength and 18Oc contrast across the whole basin only works for the North Atlantic.
MARGO - Multiproxy Approach for the Reconstruction of the Glacial Ocean surface summarizes the results of the MARGO international working group, with the aim to develop an updated and harmonised reconstruction of sea surface temperatures and sea-ice extent of the Last Glacial Maximum oceans. The MARGO approach differs from previous efforts by developing and consistently applying measures of various aspects of reconstruction reliability, and by combining faunal and geochemical proxies. In 14 papers, the volume provides a comprehensive review of earlier work and a series of new, proxy-specific reconstructions based on census counts of planktonic foraminifera, diatoms, radiolaria and dinoflagellate cysts as well as on Mg/Ca measurements in planktonic foraminifera. The approach of harmonising the calibration and application of different proxies is described in detail, various paleothermometry techniques and their results are compared and the challenge of treating sparsely sampled data as the basis for ocean circulation models is addressed. The use of stable oxygen isotope composition of foraminiferal shells as a proxy for past sea water composition is comprehensively reassessed, and a new approach to the transfer function paleothermometer is presented. This volume represents a landmark contribution to the understanding of ice-age oceanography as well as the proxies used to reconstruct past ocean states. The results will form the basis for forcing and validation of ocean circulation models. New regional reconstructions of Last Glacial Maximum ocean temperatures and sea ice cover Compilation of new calibration and fossil datasets as well as documentation of techniques and approaches to paleoenvironmental reconstructions Comparison of techniques, proxies and modelling approaches
Carbon dioxide is the most important greenhouse gas after water vapor in the atmosphere of the earth. More than 98% of the carbon of the atmosphere-ocean system is stored in the oceans as dissolved inorganic carbon. The key for understanding critical processes of the marine carbon cycle is a sound knowledge of the seawater carbonate chemistry, including equilibrium and nonequilibrium properties as well as stable isotope fractionation.Presenting the first coherent text describing equilibrium and nonequilibrium properties and stable isotope fractionation among the elements of the carbonate system. This volume presents an overview and a synthesis of these subjects which should be useful for graduate students and researchers in various fields such as biogeochemistry, chemical oceanography, paleoceanography, marine biology, marine chemistry, marine geology, and others.The volume includes an introduction to the equilibrium properties of the carbonate system in which basic concepts such as equilibrium constants, alkalinity, pH scales, and buffering are discussed. It also deals with the nonequilibrium properties of the seawater carbonate chemistry. Whereas principle of chemical kinetics are recapitulated, reaction rates and relaxation times of the carbonate system are considered in details. The book also provides a general introduction to stable isotope fractionation and describes the partitioning of carbon, oxygen, and boron isotopes between the species of the carbonate system. The appendix contains formulas for the equilibrium constants of the carbonate system, mathematical expressions to calculate carbonate system parameters, answers to exercises and more.
An important overview of Quaternary climates including detailed Pleistocene and Holocene sea-level changes, for researchers and graduate and advanced undergraduate students.
One of Springer’s Major Reference Works, this book gives the reader a truly global perspective. It is the first major reference work in its field. Paleoclimate topics covered in the encyclopedia give the reader the capability to place the observations of recent global warming in the context of longer-term natural climate fluctuations. Significant elements of the encyclopedia include recent developments in paleoclimate modeling, paleo-ocean circulation, as well as the influence of geological processes and biological feedbacks on global climate change. The encyclopedia gives the reader an entry point into the literature on these and many other groundbreaking topics.
Radioactive isotopes can be used in paleoceanography both for dating samples and as tracers of ocean processes. Here I use radiocarbon and uranium series isotopes to investigate the ocean's role in climate change over the last deglaciation. I present a new method for rapid radiocarbon analyses as a means of age-screening deep-sea corals for further study. Based on age survey results, I selected forty corals from the Drake Passage and thirteen from the Reykjanes Ridge off Iceland and dated them with uranium series isotopes. The uranium series dates give independent ages that allow radiocarbon to be used as a tracer of circulation and carbon cycle changes. The radiocarbon records generated from the Drake Passage corals show increased stratification in the Southern Ocean during the last glacial maximum (LGM) that disappeared during the start of the deglaciation as atmospheric CO2 began to rise during Heinrich Stadial 1 (H1). Considering these data and using a simple mass budget calculation, I show that the drop in atmospheric radiocarbon activity during H1 can be explained given direct carbon exchange between the radiocarbon-depleted deep ocean and atmosphere, e.g. through the Southern Ocean. The Drake Passage radiocarbon records also show evidence for decreased air-sea gas exchange in the Southern Ocean during the Antarctic Cold Reversal/Bølling-Allerød coincident with the hiatus in the deglacial CO2 rise. During this time period in the North Atlantic, radiocarbon reconstructions from deep-sea corals collected from off Iceland show a similar ventilation rate to that observed today and during the Holocene. To further investigate changes in North Atlantic ventilation over the last deglaciation, I used an inverse model to assess the consistency of sedimentary 231Pa/230Th ratios from the Holocene, H1, and the LGM with the modern circulation. Although sedimentary 231Pa/230Th has been used to infer changes in the strength of the meridional overturning circulation in the past, I find that published data are consistent with the modern circulation during the LGM and H1. These findings highlight the importance of giving due regard to the uncertainties in the behavior and spatial distribution of paleoceanographic tracers.
The South Atlantic plays a critical role in the couplingofoceanic processes between the Antarctic and the lower latitudes. The Antarctic Ocean, along with the adjacent southern seas, is of substantial importance for global climate and for the distributionofwater masses because itprovides large regions ofthe world ocean with intermediate and bottom waters. In contrast to the North Atlantic, the Southern Ocean acts more as an "information distributor", as opposed to an amplifier. Just as the North Atlantic is influencedby the South Atlantic through the contributionofwarm surface water,the incomingsupply ofNADW - in the area of the Southern Ocean as Circumantarctic Deep Water - influences the oceanography ofthe Antarctic. The competing influences from the northern and southern oceans on the current and mass budget systems can be best studied in the South Atlantic. Not only do changes in the current systems in the eastern Atlantic high-production regions affect the energy budget, they also influence the nutrient inventories, and therefore impact the entire productivity ofthe ocean. In addition, the broad region of the polar front is a critical area with respect to productivity-related circulation since it is the source of Antarctic Intermediate Water. Although theAntarctic Intermediate Watertoday liesdeeper than the water that rises in the upwelling regions, it is the long-term source ofnutrients that are ultimately responsible for the supply oforganic matter to the sea floor and to sediments.