Download Free Inferred Cosmic Ray Spectrum From Fermi Large Area Telescope Gamma Ray Observations Of Earths Limb Book in PDF and EPUB Free Download. You can read online Inferred Cosmic Ray Spectrum From Fermi Large Area Telescope Gamma Ray Observations Of Earths Limb and write the review.

Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly-discovered features may offer a clue to the origin of high-energy CRs. We use the ${\it Fermi}$ Large Area Telescope observations of the $\gamma$-ray emission from the Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range $\sim 90~$GeV-$6~$TeV (derived from a photon energy range $15~$GeV-$1~$TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index $2.68 \pm 0.04$ and $2.61 \pm 0.08$ above $\sim 200~$GeV, respectively.
We report on measurements of the cosmic-ray induced?-ray emission of Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The LAT has observed the Earth during its commissioning phase and with a dedicated Earth-limb following observation in September 2008. These measurements yielded H"6.4 x 106 photons with energies> 100 MeV and H"250 hours total livetime for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission - often referred to as Earth albedo gamma-ray emission - has a power-law shape up to 500 GeV with spectral index? = 2.79 ± 0.06.
The Fermi-LAT (Large Area Telescope) gamma-ray space observatory was launched in June 2008 and has been continuously operating since. By far the brightest gamma-ray source in the sky for Fermi is the Earth. This emission is produced by the interactions between cosmic-ray (CR) particles and the Earth's atmosphere. Various properties of this emission have been measured with unprecedented details. Its energy spectrum is used to infer the spectrum of CR proton. The correlations between the thickness of the atmosphere and the solar cycle are tested by observing the time variation of its profile shape. Also, Fermi has demonstrated an excellent capacity to detect electrons and positrons. This enables the measurements of separate CR electrons and positrons spectra between 20 - 200 GeV, using the geomagnetic field to differentiate the charge sign. The result shows that the positron fraction is increasing with energy in this energy range, which strongly contradicts our standard models of CR productions and propagations. The interpretation of the excess positrons is still at the frontier of current CR physics research. It may be a sign of new phenomena, such as dark matter annihilation signal, or normal astrophysical sources in the local universe that we have to better understand.
The Fermi Gamma-ray Space Telescope recently celebrated its two-years anniversary in space. With the Large Area Telescope (LAT), its main instrument onboard, Fermi opened a new era in high-energy astrophysics and in particular for the study of Gamma-Ray Bursts (GRBs), which are short flashes of -rays associated with the brightest and most distant events ever observed in our universe after the Big Bang. My thesis work focused primarily on the observations of this phenomenon with the LAT (20 MeV - 300 GeV) and the Gamma-ray Burst Monitor (10 keV - 40 MeV) onboard the Fermi satellite. After describing the procedure used for detection and analysis of LAT GRBs, I will provide an overview of the temporal and spectral features observed during the prompt emission of these events after one year and a half of operation for Fermi. GRBs can also be used as a tool to probe interesting physics. My focus will be on the detection of very high energy photons (typically above 10 GeV) associated with LAT GRBs and which were used to set significant constraints both on a possible violation of Lorentz invariance - which postulates that all observers measure exactly the same speed of light in vacuum, independently of photon energy - and on the Optical-Ultraviolet extragalactic background light in the Universe.
This is the first report of Fermi Gamma-ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7-October 6, indicate strong, highly variable [gamma]-ray emission with an average flux of H"3 x 10−6 photons cm−2 s−1, for energies> 100 MeV. The [gamma]-ray flux is variable, with strong, distinct, symmetrically-shaped flares for which the flux increases by a factor of several on a time scale of about three days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair-production implies relativistic beaming with Doppler factor [delta]> 8, consistent with the values inferred from VLBI observations of superluminal expansion ([delta] H"25). The observed [gamma]-ray spectrum is not consistent with a simple power-law, but instead steepens strongly above H"2 GeV, and is well described by a broken power-law with photon indices of H"2.3 and H"3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2GeV could be due to -ray absorption via photonphoton pair production on the soft X-ray photon field of the host AGN, but such an interpretation would require the dissipation region to be located very close (H" 100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.
This book introduces the reader to the field of nuclear astrophysics, i.e. the acquisition and reading of measurements on unstable isotopes in different parts of the universe. The authors explain the role of radioactivities in astrophysics, discuss specific sources of cosmic isotopes and in which special regions they can be observed. More specifically, the authors address stars of different types, stellar explosions which terminate stellar evolutions, and other explosions triggered by mass transfers and instabilities in binary stars. They also address nuclear reactions and transport processes in interstellar space, in the contexts of cosmic rays and of chemical evolution. A special chapter is dedicated to the solar system which even provides material samples. The book also contains a description of key tools which astrophysicists employ in those particular studies and a glossary of key terms in astronomy with radioactivities.
We present an analysis of the gamma-ray measurements by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Cygnus Loop (G74.0-8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2-100 GeV. The gamma-ray spectrum shows a break in the range 2-3 GeV. The gamma-ray luminosity is ≈ 1 x 1033 erg s−1 between 1-100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0{sup o}.7 ± 0{sup o}.1 and 1{sup o}.6 ± 0{sup o}.1. Given the association among X-ray rims, H[alpha] filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.
The research program in gamma-ray astronomy focuses on increasing our knowledge of the nature and origin of galactic and extragalactic gamma rays, and understanding high-energy processes in the Sun, celestial objects, interstellar medium, and extragalactic space.This book not only provides an overview of the latest research and future plans for space-borne and ground-based experiments dedicated to the observation of the gamma-ray sky, but also addresses the topic of variable gamma-ray sources from the perspective of their identification and counterparts at different wavelengths. It further gives an overview of the theory related to the most qualified emission processes that take place in these sources and of the nature of their variability.